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Abstract

Iithis research a new approach to the control of systems represented by stochastic dlifferect ial

equiatin (SDEs) isdeveloped ini which stochastic control is viewed as determinist ic connilt of iih ;1

partiuafom f constraint st ruct ure. Specifically, thle characteristic -non-ani icipat vii y properlt ' of

the control processes is formulated a. an equality constraint on the set of possibly atlticijpatii~

processes. The optimal non-anticipative control is then recovered by minimizing. over the class of'

p)ossibly anticipating processes, a cost function modified by the inclusion of a Lagrange tmultiplier term

to etnforce thle nonaicticipativii v constraint. This unconstrained minimization is carried (out

~patI li w ie- i.e. separately for each value of the random parameter ,; and henice reclutce, oý

patamet rizetl fami ly of' detennminist ic opt inial control problems.

Solutions of the con trolled SI) Es withI anticipative controls are defined l)\ a d(l((Ioi )O1I o

tulet hod. It ios shown that the -value functiotn of the control problenm is thle unique glohal Solut ion of a

robuist equation ( random partial differential equation) associated to a linear backward Hlamilton-

Jacobi- Ihhlniat stothIiat it- partial dilfferenctial t-quat ion ( HJB SPDE). This appears a.- limiting SI'IW for

it sepctjjv~ of' ratidotn Ill II PDI)IK% whet linear intterpolation ap~proximnation of Ihe Wiener procv. i,

u.sed. Our approach extends the \\oiig- Zakai type result., [20] from SI)E to t he st oclia,1 dic (lv lci

progialuilling equat ion by showing how this arises as average of the limit of a sequence of (lt-wruiniiist iC

d.%ntiallic p)rogratlnttitig equat ion-,. lice stochastic characteristic mlethodl of' IKinita [131, is 11--diit)

rep)resentt fic value lici ion. b). l-oositig the Lagrange multiplier eqJual to ith icuc;11iil cipi~it I

conistrainit value the usual stochastic tionanticipative) optimal control and optimia-l co-St art, rqeCovered.

Thec anticipative opt imal conttrol problemi is formulated and solved by almost sure dlet er ii[list ic

opt ittal conttrol. We obtain a PI)E for th -ecost of perfect information": the difference bet ween thIe

cost function of the nonanticipative control problem and the cost of the anticipative problemt which

satisfies a nonmlinear backward HJB SPIDE. Poisson bracket conditions are found ensurintg this has a

global sol cit ion. Thme cost. of perfect i?,f.~rinat ion is shown to be zero when a Lagrangian sit uaitinaiflc ik

in' ariatit for thle stochiastic chtaractentit its. IQ(, and a nonlinear anticipative- conitrol problem arc

conisidered as examples in this frainrioerck
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0: Introduction and presentation of the report

At first sight it appears that stochastic control is simply a generalization of deterministic control. One

sees this for example ill the familiar LQ(, problem: given the solution to the stochaLstic linear r.gulatol

problem (with white noise perturbations) one obtains the solution for the deterministii c cam- simiiil.% b

setting the noise mean and covariance to zero. This is, however, a misleading example and. ill gn'ral.

deterministic optimal control is far from being a trivial by-product of stochastic control. which is iti

fact ill some respects substantially simpler. Indeed. much of it concerns the "unifornily elliptlic" ,a.

where the "snioothing" properties of Brownian motion make dynamic programming iii its simiplest

foriii i viabih, technique adl obviate the need for special methods to handle non-differesitiabilit .. Il 111i,-

research an alternative approach is developed, in which stochastic control is viewed as d,.t errniiin,1t

contirol with a particular forutm of constraint structure. Thus the distinction betweeni *'.letrciii ""

arId "stochastic- is in principle eradicated. (In practice. of course, it is not, sin-e tOl tlori ii I 1,.

constraints leads to idiosynucratic solution techniques.) The first to espouse this point of %ieW were

ioukafcllar anid Wetl [I1t1. and id i-ccession of papers followed in the stochasti( iropratlit nhug

literallirc. icluditig ,ottle very getitral fortiulalions inl conttinuous titmie. 'lliv tirtll stmhIi,

proqyaitntq (lenlotes a probletmi in which thhe cost or reward is given as some explicit fitlt iOlt ot a

d.cisioi process and .sonme randoit )aranteters. Until recently little had been done iil thii %.i4i ill

ltoclha.-tic control. i.e. probhlem: where the cost is determined implicitly through the evolttion of omii.

(Idvyamttical system. mainly because of apparent dilficuldes in formiulatinig the problehm (tirr,,, I. I h.,.

dlifficulties have now beeni overcome. •nd the Rockafellar/ Wets approach has beeii exii,,vI.d with -oiet.

t horoglutiess.

0

`;tochastic optimization problems typically taki. the form

nuin EJ(d,.;)

r. 1

EZ[



where . E Q, the set of random ev,-iots. M is some class of functions d: &?-F (F is some space of

d(cisionis) and E denotes expectation with respect to a probability Pon Q. Note that this probii.i is

truly --stochastic" only when ., isincompletely known. If the controller knows ., in advance tlien

(ignoring technicalities) Z is the set of all functions d:f-,F' and we have

rain EJ(d,w) = .' min J(f.,;).
dE M f E F

TIhus tminimization can be carried out separately for each w and the only role ofthe probability P is to

average the result. In dynamnic optimization F is typically a class of functions such asi...[7:l']. I

being the "action space- and 7' a time set. so that the controls are stochastic process~e- i(/-. .). I ho

itmost basic requiretment is that these processes respect the flow of information. i.e. depend at ,iech tim,

only on what has been observed tilp to that time. In fact. this is a Inear equahty (oosltratl, l. I ) se," hi-

ill the simplest setting. suppo!-,' Q = iT'2 "3-"4}.' = R,T ' = {J. I }. A control u( .. - i - I lii

equivalent to ati 8-vector x (= I ...... r,,) where

X~i = tU011 ) _d I ...

x1 i = u I( - , _ .1 . = . .

alifl tiit' cost canl be expressed as

'I

i=I

whert, = I {)i). Let .1 = {l.,, and suppose that at time 0 we have no observationis 'llile at

tine I we discover whether .4 or A(' ia. occurred. The decision rule must then be a constantt att lit" 0

and constant on A atid A. at time 1. But this means that x must satisfy the equality coi,-traint

Ile = 0. where

fif



1i 0 0 0 0 0 0

1 (0 1 0J 0 0 0 0

1= I 1 0I -I 1 0 (0 0 0

O 0i 0 0 1 -I1 0 0

0 0 0 0 0 0 1 -

Or. pil another way. x nmust fie ill a certain 3-dimensional subspace S of R8. ']'here- ik di'etforc

L~agrlarigte niult iplier. ix.t. a 5-vector A E S -L such that the optimial decision is a global in mimmin of

!i( ) + A'I a'. The mulnt ipl ier A i!- the picr for information in that it gives the increi eitia I (let ream, ill

cost that is available ifthe infornint101 ion cnstraint is waived.

Ili thIiis research these ideas are ext ended to cont inuLous-tinie dynamical systems. i.e. to the problemi of'

whlir. lit' [Aoc0,. 1 J t at j.fics ific cowt rolled stochastic dliffereintial equat ion

dx, = f(xt. n1 )dt -t- yg a )du t.*

Hetre it a lirowiiiala tlot ion anid ii~ ,- iý If inion-anticipative) control process.

Ini h~e nin ( 60's W~ong and Zakal [20] add rese,ed I lie p~roblemls of' approxinrat ing si ocliast it int cgraii b%

otrliiir.% otit" aind app~roximratring t lie solutions of stochastic differential eqtiatioiis (SM.) 1). Illi.

'tOhiroii, of sequjences of ordinary diffuiertiiiial equat ions using pitecewise linear alplruxiiiat I loll 41the

W'ienier process. Sussmiaiii [118j rout in ned in thre 7 0*s by studying when call the soluit ion of a SI) 1K I

defined by "extenuding by couitmiuit. to C ('" noises the solution of a C1 noise-dri~ cii ordjirii'

differenitial equat ion. U sing Ilthese ide-a,. Da vis [53 reduced the LQG problem for the linevar conitrolled

diffuiiunim driven by Wiener p~rocesses to a family of deterministic linear quadratic opt imial conutrol

problemis (parametrized by the paths of the driving Wiener process) with nonanticipativilN equiality

couistraillt on) thle set of admlissýible possibly anticipative controls. First. a pathwise optinral -ost i,.

delerminnitist ically eval iated for e'achI of' lie prol denus of filhe family by first coinsidering uni vitiut ~tocha~sthc

pindctes.es wit h ('I pathIs atud ilien iisitig t ie wi rk of Summaina [18] to extenid till, cost 14 C0t l;111 Ii,
lb 4



'oninmily . Flinally, averaging over the samlple space yields the usual LQG optimal cost.

The report will approach in this persp'ýrtive the relation between nonlinear deterministic anid ýIoc'hasti(

control problems by reducing the nonlinear stochastic optimal control problem to a family of

dehterminnistic optimal control problems with a cost containing a nonanticipativity consitrail . (Uo1iiidhi

the nonlinmear (ionanticipati e) stochastic optimal control problem

dxt = f(xt, ut) di + g(xl) dw, {0.I(

x- = x(0)

in i. [O(x(T))] : ifi : J(u,w) (11.2)iJ E XV 11 C

%litr" N is Ihle class of noliait'icipative (a(ladpted) controls with values in a comipact stt % C Hil i-

%ill lbe defined ii detail ill lhe next section). If we can define R(uw) for nlom-adlpml'I (odin ''tif,.

conl rols•i E .4 with valude, in tIe liicopact set OeUJ C R..' (see next section for the commplet-e d..ii; i.,1, ol

- A)t hni

ili 1. J(11.%\ ) = F 11f jim. 1 v
iiE -11 E At

provi(led we( Illakc solile assumoplioin• enstirinp that the infiunum on the right is aitainIed Ir IM each -a

111f f 1'11ion atssigtinig io each Ilihe corresponding minimizing control function is mea.surable. At i- Ike

class of measurable .l.-vahllid (determitiisli(i) controls. This requires of course a derihiiitn lon o lit-

'olntiomi of anl anticipative SI.l (with ant icipative drift) which will be done in Secioni I .sing Ihli

decomposition of solutions of SI)E's (see Kunila [14. p. 268] and Ocone and Pardoux [15]). (0.3) call

It. tised to .solke problem (0.2) b% sohing a family of deterministic optimal control problems indexed

by -,• E Q for a wider class of controls u E A. This can be done by adding to the cost a Lagrauuge

inuntiplier corresponding to the nonanticipativity constraint as a linear functional of the ('conrols and

% I

(4



inf [,(o .w..) + <A(.). u.,>j

for each ,, E Q and then averaging oer Q. To recover (0.2) we would like the above mininium io he

attained at the same u(.. w) at which (0.2) is minimized. Assuming (0.2) has an optimal feedback

Solhitionl 11(t. xt ). we will consider the nonanticipativity constraint, as an integral cost term

tIA'(t, xt. ,.,,) u.,(t1) (it

U

and we will define A,(t. x. ,) (superscript i deiiotes transpose) so that A,(t. xt, a) is I,1

T

integrabl• (i.e. E f IA'(t. x. I')j cit x : for any ut E .A wher xt is the solution of (0.1)

0

correspondintg to ut) and

I i arg illf [+(i,..v(.. A,)• + ,j (t. x(t. .). .-) u (t)dt] =

0

= arg inf 3(11. W) = 1*(t. x(t, .-)
Ii E Xf

Iii, 1' ,A (t. x.. ' 0

fiii A(t. x. w) is - adaltd (i... loture adapted : is the sigma algebra

generaled by the flittore incrteittew f the driving Wiener process w(r. •) w(s.

I.):t < r < s < I)

('ondlit ions (ii) and (iii) inlply

II

I I JA A(t. M(t. w). w) u(t. w) dt = 0

0

for mnoan licipative controls u(...) E X.

()ir ipproach extiends the Wong-Zakai type of results [20] (which show how sohtli,,,, 1)f , •imias,t tic

f t



differential equations arise as limits of solutionts of sequences of ordinary differential equalions) Irom

S1)i. to optimhal control problemi.s for controlled SDE via the HJB equation of dynamic programllitig.

In the case when nonanticipating controls appear in the drift the Wong-Zakai con•'.rgence result slates

that under smoothness and boundedness assumptions on the coefficients we have ( P-lih denote,

Iijiit in probability)

l'-lin, xnl(t,,') -- x(t.•)

whlert,

with
tit d nt~a ((Li))=

wit 1t

11(t. +)= w(t k,') + 2"(1 - tk,) (%(kv. ) (t k,,,')): t E [tk, tk+ lI) .3

I k = k/2•": k = 0, 1 .... ['1/'_,1]

r( t'")(tt _ .2"l_ (W(tk±l.*'' - W(tk..)) for t E [tk. tk+1]

11 ( itk ' , 1

dx(o.,,:) = 7(x(t,+').u(t,.,;)) (it + gwx t..;)) odw(t.ý,) ; x(O,..;) = x0 Oi

f(x.tt) = f(x.u) - ½gxg(x)

where " o" denotes St ratotovich differenti al and 11(t,,,t) E X are the paths of t le tiont at iijltit '%c

control. As it is known (0.6) can be written in Ito form as (0.1) by adding a correction terito Ot ,h

drift. L.tt us con|sidehr the Stoclia.tic optimtal control problem (0.1),(0.2). The dynaumtic progra||itiiig

second order PDE of stochastic ophitial control [8, p.154] gives under suitable assumptions the value

function V(Ix) inf EEO(x(T1t.x...t))] (x(T;tx,.,) is the solution of (0.1) at time T started at timeuE.N"

i from x)

fA



II

0 0

110! + 4 0il J i•x(. x) fi(x. it)) + it x ggr 0 :V(T. x) =O(x) 1). 7)

This is shiown by using (fie probabilistir representation formula for the solution of (0.7). Lel it, conside'r

now tile sequence of pathwise deter minist ic optimal control problems for (0.4):

T
,ilf t0( nT . )+ I( All x~ .. '.-)T (Iw)dt](.)

0

where A" is the approximation sequence (corrosponding to (0.5) ) of the Lagrange inult ivlhi, procrs-

allowing ui. to solve (0.2) over tIhe enlarged ('Ires of possibly anticipating controls by solving the family

of patlwi, opt nial (ont rol prol)e4ms -' -r u E A for almost all w E Q

ii E -4¶

I it(T value fuct ion t. nt u( I .f.) + f Ai( .X ( tU( r..)
IEit.

0

of (t.Xi -atisl'e t liv sequelnce of l'amili,'- oft d, ramic programming first order P1)E, (paraiiit rized bh

- ot (of rlinit -1 .I Ii 4, 1 ) ! id I (-l colllt ,

' ' (.x.,,,) + rain { \ tx.,.)T(x, it) + A(t,x,,)ti} + 12\ (tVn d)n(I.) 0
0---i E C. 7T ax (txwg x -I

V"(T. x.--,) = O(x) ( .J

"lhe Lagrange multiplier process that will be introduced in the report will give ant aniswer to Ih,

it riguing qui.tioi : Hlow can %%v arrive at (0.7) from (0.9) namely what is the -bridge- between tihe

s.condl (,r(her PlDE of stochastic dyn4,'nic progranmning and the first order PIE of determini.!tiu

dynainic programming ? The answer is

V t.x = P-li-a Vn(t.x _,_)II--x



P11( I lit bridlge Itself whlich flik1 the -gap-(in the terminology of [18]) bet weeni stocliasli ain

detlermiinisi ic optimnal control is a new 11 :irniltoni-J acob~i-Bellmiani backward Stral onovicli

stochastic partial differential equation , at will be introduced and studied by (Is

X..,ý) +Inin -i (I. x.-1fT(x. u) + )u(t.x..,')ul dt + OV~ (t, x.W) g(x) 6 dw, = 0

1 1 E 0x x

V(T. x,,.) = O(x) U0. 1 It

hjaxij' 11m hq uIjiuJI' glolbdj 'oijillonJ N( t..'..~)::.hiiu in a certain space of' llUhl'

SCeuittitait iigales, to be defined preci.,i, Inl Section 1. Our deterministic nit-thods will coluceul i-alft oi O

iluii '1)l. associatedl to (0.10)) (lefiri((l alnmost surelN

\v W '0C1~

\ vi" it iý tpio~d Ifiat W(IC)x). =\t... e u~ the almiost sure decomoitioait itt l tI

0,ioia~t , flo, of (0.1) [113i given lI,\

t( = 1,0 7/t(x)

d~c1(y) gi(ý 1 (y)) o dwt. ý,(yl M.y 11.2)

I li ~ , 3 ±h)(X)) f (ý, 0o 71OX). ut 1) ?0 Wx =X(0) (01.12-)

lhis dJecomp~losition holds on isorne 92' C Q with P(f?'1= for which ýt(y) is a global flow of

diftl-iuurphisisii as we will see later -.-i The robust PDE ((0.11) is the dynamic programmluinug vequal ion



•7

for the pat hwise optimal control l)roblems

S[0 o,•,i.(,;,r) + J,\(t.,,€,(,fi).•)u(t,•),h]
i.f

u E .•
0

subject to (0.12") as only this ilvolves controls.

\Ve will also consider tile anticil)ativc optinal control problem (A-O) which will be ,,ulved b,. rvdmli.u

to pathwise deterministic control via the stochastic flow decomposition fornula. TI.. prohhtu iz• thi,.

cast' is that the random value functiot, of the family is characterized by a nonliqer ba,'kward SI'I)I•

which does s)ot ;-always hart, a gh•baJ slt)chastic characteristics solution. Wc give conditions cusuritLu.

this b.• l tu.,fig a l+agrangian submanifold (see the stochastic mechanics of Bismut [:•]...\mrhi [1]) im¢,

a, itl•ariau+ tnanilbld for the s+<wh+t.,•ic hazztiltonian system of characteristic t'qlt;llit)t•s. ] h," ,•l)tim•l

(tmtro[ i- gi',cn by a selection It'lillllil •Hld it foruula is obtained for the cost of inlorm;ttitm *•ll th,.

filtut'e (i.t'. the difference betv,•,tl• thc not•at•icil)ali•.e and anticipative value functious) :

...X(t.x) = \'Itx) -EV0(t.x,.,:)

whcn,, a.,, we will ,•ct' V(!(t.x,,.,:) = mf 0(x('l :t.x.w)) satisfies the HJB SPDE
u E .•-

• V0

dVI)(t'x'+) + t•z'•'%t- { t"7•'x (t'x'+"lOV0x =/x.u)}dl + • (t.x.,.z)g(x)6 dwt = 0 (t). I:li

Vll(r.x..•) = 0(x)

,•o that E\'0(t.x,,,) = infME[O(x(T:t.x.w)]. The cost of perfect information known in the stocha.,,tic

uE
programming litcrature as I'Z\'PI (expected value of perfect information) [16],[19] is a mca.•urv of tlw

effi'ct of future randomness on tht. stochastic optimal control problem.

lu orth'r Io oMain explicit equations and fl)rmulae for the cost functions, optintal controls, l.agrangc

S. . . . . ... . . . . .... . ... ... 1 3



multipliers and for the cost of informiat ion we will make smoothness and boundedness assiiililotis

uising a dynamic programmning approach. Most of these assumptions are made to be able it) provte thet

dviiainic progranmming equationl for the almiost sure optimal control by which the ant icipaliv cotr oil

problem is solved. These assumptions ensure this equation has a solution (tire value function) whichi

c-ali be represented in terms of stochastic flows. Tire same applies to the cost of perfect inforimationi.

Somie of' these assumptions canl be relaxed in particular cases as we will see in sections 2.1 anir( 3.3 .It'

we give up) thlese comput atijonal aimis we canl weaken the assumptions by air approach hast'd ttIll

applying pathwise the deterministic maximlint principle (see Remark 4 after Proposit ion 2.1 1

The' ouitline of' thle report is as, follows. IIn Sect ion I we define the solution of a stochiast ic difft'r'iit ial

t'quatitot withI aniticipat ive coot rols in thlet d rift by using the decomposition of thre flow of' a SD:

wri It t' as tilie comptosi tion of lilt' slt otist ic flow of the diffusion part (which dot's riot inivol, ctotw rol'-)

wIt Iit kit flv ow of a famiily of ordiiiar% dilfetret'ilial equations (OD)E) paranietri'zed by .;. U ot ilsl ttiil\%

appear III thlis, raiidoti ODE.K aiid tlit cail aiiticipatt' &s stochastic integrals art' not imiolvtt.Iii itil

paper [,we used antticipat ivt' stochastic calculus and the result of [12] on the existenice and utiihqkle'Iit's

of soltitioiis of drift anticipative SM)Ls in a suitable Sobolev space over the WNiener space. This approachi

rt'tt uiit W~\tit'ne~r sit oothi tess alit b ou titletness assumtip1ions oti thte controls. We also p rese'n t ill t his

Swct oion th lit' ocliastic chiaractetrist ics ini i' od whlich allows the rt'presentation of solutions of SI D)IN ill

teriiis of stochiast ic flows or' sm.1. 'Ilis representtat ion will be very useful in finding Poissoti bratcket

toiilhi tion-ý for thle exist eiice of globali solutlions and for proving tile various con vtrgv'lct' rt'snIlt, for

S 1 I) 1sF via tfite exist~ing convt'rgencei~tesuilts for SI)Es. In Section 2 we prove the Lagrangte iiilt iplit'r

theorem givinig an explicit formtula lor A(t.x.w) in terms of the unique global soiuttioii of a liiiar

backward IIJB SPIDE showing that fill' inl)liplier has all the properties required for it to act as an

eqtuality constraint for the lioiiaiiticipalivitý constraint, for control processes. Wu' consider as anl

examiple' thle lionaliticipat ive L.Q( Problem which is solved pathwise by determining first the' Lagrangt'

miutltiplier process. lIn Section 3 we solve tire anticipative optimal control problem

ti A

. ... ....



amd we show that the valhte functionl of the pathwise problems by means of which it i. solked Is Ihi.

unique global solution of a nonlinear backward Stratonovich SPDE. We impose Poisson| brac'kel

conditionis for random conservation laws or for the invariance of the Lagrangian sublmtattiitld for ilic

stochas,;tic characteristic system ol the .onlinear SPDE. Such conditions imply the existence of a global

clharact•.ristic solution. A formula is oblained for the cost of perfect information anld we pro\e, that thi-

is z'ro wlen the Lagrangiani sitbul-intfold is invariant or there exists a tlime varvilng non1 'aj idmuu

coniservation law for the stochastic characteristic svstem of the HJBSPDE of ali'icipalti\e opt imal

control. We consider as example, the anticipative LQG problem and a scalar nonlinear atiticipativ*

opt imal conit|rol problem. We show that there exists indeed a random conservation law in the iQ(, case

aitd we (alculate the cost of perfect information. The Lagrangian submanifold is itnvarianit iii tle

itohii, ear problem caste and I he cost of perfect information is zero.



1 : Anticipative controls, solutions of anticipative SDE and
stochastic characteristics solutions for SPDE

Let I1>1) and (Q, U. (900 < t < T' p' (w,), < t < T) denote the canonical d-fold Wiener pacvpc.. Qi.

= ('([0. T]. Rd), wt(,a) = ,,(t) is the coordinate process, ('t) is the natural filtration of* (wt ), V is

Wiener measure, 9 is the P-completioti of •,J. and, for each t E [0, T), -t is 1tt completed with all P-

null sets of C. Thus (wt) is a standard d-dinmensional Brownian motion. Define Q_=[0.A']xQ. j=%[l.

T] x J, P = LebxP and let 9 be the a-field of It-predictable sets in f). Fix an integer in and define .A

to be the set of functions u : [0, TI x f--1. C Rm which are measurable with respect to the product e-

lehd %[o. Trixc = 4 where 9iU is comnact. Define also XN as the set of functions u: [0. T] x Q -

cu C R'.' which are ineasioralhht with respect to 9 and thus fJ¶ adapted. ('onsidhr Il. ,tolin,'r

d x, =fr(xt. Io)(it + g(xt) odwt, xI X E RU (I.])

d L9gi
f (X. 1t) =~x Qu) - L gi gi(X) : =X Y

Ilor a itujlantiicipativ.e ('ottuol lit E t the solution of (1.1) is defined via Stratothivi(-i •toh .iai,

ielral eqiat lol

t t

X, = x (+ U-(Xr. uT)dT + J g(xr) o d;r

0 0

For anticipative controls u, E A we i|t.,oduce the following definition assuming for the mj|om|tent that g

is ("12 and bounded: f is hounded a'id 1) in (x. ti).

Definition I





and the anticipative controls hav.o bounded Wiener space derivative JD~u0t .~)f : M. X%', purm-di I i

anticipative stochastic calculus approach in [6]. We assume g is so 5 that the solution of 1.3) exist,

for ýO= y and ýt(y) is a Cl flow of aitfeoinorphisnis a.s. ;thus (ý't (y) is well de~fined for all (t. v)

it.,. acCording to flisii ut [3. 1).50lJ. Unde~lr I lese assumptions ,(1.4) has a global soln lion (s.ee Oroiit

and Pardloux [151).

We preser-, next the notion of stochastic characteristics (global) solution (developed in Kunita [12.13j)

which will be used throughout for the stochastic partial differential equations involved ill our approm It.

Conisider thle First order St ratonovich nonlinear SPDE for x E Rd, t E R+ with initial cuigdit ionl

()v O') (W
=F(t.x.- )(1t +, G5 U(t.x. - w

HX I Ox{ d( t..X) X) l ,(1.5)

with F( t.x.p) continuous in (t.x.p) and a (,n,+ La -function of (x.p) (i.e. mi+ -times coutintiuously

dlifferenitable in (x.p) with v- 1lilder cont inuous tii+1t partial derivatives, or > 0). (.*(I.t . = I....(I

culliliumnon,, inl ( t.x.p). (oiitjiIilmos tliflereiitiable inl and (,1,,+2.. _ fun,ctioiis of, (x.1)) 1,or l. 11 > l'.an

0 is contitnuously differentiahle. " .,)is a st andard d-diniensional Brownian moion oit s aklamv.

A rauloiun field %~C (..X) defitied for all I E R+: x E R. will be said global Orn'" - pro( vs if' for almtost all

SE Q % (t. - -) i s a .... - function for all tE R+ with continuous iii (I.x) partial

(l(rivative. Okv(t'C..) I in whr '- L l... kd 8 + ... k I glotbal
wher Ox 1(9 (YXd) (,

dxx

x E Rd.

Definition 2 A random field %v(t,x) is a global C, a solution of (1.5) if it is a global

Iii-senitaringleand it satisfies for all (t.x) ER+ xRd

%,(~x) OX) rx.ý±ý-X- r+ G.f(r x LX( X)) o dw~7. a.s.
f Io e

0 =

lb



F - - - " -

It i, proved in [12.13] that lthe linear SPI)E with initial condition 0( ) of class (I+1 *". 2< I <11

d{ix,..,, F(tx)!-(t-x) + d i +

v( 0.x) = 0(x ) 

(I .
)

having F continuous in (t,x) and of class Cm+'1 and Gj continuous in (t,x), of clas. .(.n-tli > :•

has a global (unique) C 1-1,3 solution with 3 < o. Generally (1.5) has only a local solution v(t.x) up

to, a stopping iie t < T(x) which requires the definition of local random fields and local

.,.- _-mintarl ingales [12. 13]. [his ..,olution is represented as

v(I.x) = a 0 1(t) (1.7)

whet-re ,,t(x) = ,t(x.x(•x()). \,(xI = 1(x.(}x(X)), vt(x) = it(x.O(x),O9x(x)) ar, the f'it( , - t rhi,

-to hasihn characl rt.titcs .sqifs ti v.with gt'eneril initial condition

(lt = -Fp(t"-t'.ýI)dt + o (;.~(t'•tit) °dwi
j=l

ddlit = Fx(It"•'j'itl)< + Z ;..x j ot't) dwi,(.)

)= I

di/t = (F'(t,ýt, ýjt) - F'l(t,,. ,t) j t)dt + o ( jt•tt) -G pt,-" itf ) dwJ

j=1

(110

a. . I),

ýo = a, j 0= 1)., 'O= c

Here F"p t.x.p) denotes the vector of partial derivatives with respect to p. The rema.,oni for the ,,ltt ion

(1.7) being only locally defined up to .4 stopping time t E T(x) is that ;,(x) is in general onl1 i local

I



flow of diffeomorphisms because of thw' "coupling- between (1.8) - (1.9).

WVe will be interested only in global solutions as these will characterize value ftmctioli, of varioil,

opt)nial control problems . Tihat is why %e do not present in this introductio, h lolai mdl IvIior.

devel)ped ili [12.13]. We will be forced to finc, conditions ensuring (1.8) - (1.10) has (crtaill (ahijl,,t

surely) invariant submanifolds -decoupling" from one another the stochastic charact•.ri-ti-( l•id

ens.uring the existence of o'(x) for all t E R+ a.s. thus turning (1.7) into a global solution. Irom I hi,

poinlt of view the Poisson bracket conditions of §3.1 represent new results for the existence of global

solutions lor nonlinear SPI)E's. "I'.: coefficients of our SPDE's will be assumed to ha\ c boun ded

d,.ri.ative.s (thus ot=I) and all our solution, will h4. global C2.3 for 3 < 1. We will term theum- qbhi.m,

C"2 %oluliw,,% omitting 3. Also. we will use backward SPDE's. Using to's backward formula [I I] alnd

reptlacin g in (1.8) - (1.10) the forward Stratonovich integral by the backward Straloumiuo inieglttral.

lhe charateristics representatiot. of solhlioim of a backward SPI)E is again (1.7) but with amckward

c(Iaracteri.t ic..
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2 : Families of deterministic control problems

and nonanticipativity constraints via Lagrange multipliers

We shall show that the standard (nonawticipative) stochastic optimal control problemn

inlf E[O(x(T))) (2.1)
'I E N~

for (1.1) caun be solved by allowing a larger class of controls u E A (possibly anticipative), iju rodiaing

Jnonanticipativity constraints in the cost via Lagrange multipliers and solving instead a Iainilx of

(determuinist ic Ol)t inial cot rol problerht paratuet rized by the sample functions of I lie \Viu'r lruer.,- aud

of tIhe Lagrange mult ipliiers. A( t x. _) wit )I A :[0. '1] x Rd x 12-RI"

T
inf [ ((Xl.(X. ,A)) - ' (7. x_ýx, i'.,. (-r) (17] (2.2)
SE -A f

with xt (x. ,:), the solution of (1.1) for anticipative controls as defined in Definition I. xl(x. _j = 41 C

Ill(x). As only rj/(x) depends ou II wt, get t le equivalent family of problenms for . E Q?' wih lit' S!,lin,,d

it l).efiiiioil 1

if [,9o [0 1 (jl) 0 J + r r .17 . , ) u(T) dr] (2.3)
u E A f

d it - ) _ I f 2 1
d'td- x = (~T)l't.) T(ýt 0 r/". ut). 170=x (2.1)

%here we dropped x front the notation Yt(x) for simplicity and

S(rrl,.;):= Ar. ~ r/..•(2.5)

By averaging (2.3) over the sample space for suitably chosen [l Lagrange multipliers ote would then

like to obtait the optimal cost (2.1). We will state and prove in this section a Lagrange multiplier

l44



theorem showing how to define )(r. v), ,j) to that it will act as a nonanticipativity consiraiiu in a

family of deterministic (anticipative) optimal control problems.

We first make the following assum wptions

(a) f is I)ounded ili x and u and witli continuous and bounded in x and u mixed partial

derivatives up to order 5 (i.e. Cjb): g is bounded and C5, 0 is C4

(b) For everyy v E R'. (I (gg1 (x))i.YiYj > 0 for all x E Rd.
i. j= I

(cI Thec (tionaliticipative) ,tocliasti' optimal control problem

dX,= f(xt, itl) tit 4 - ., g diw

{InC F[l) = l))

hiaý a feedback soluih) ii*(t. x) which ik continuous and C. in t, C4 in x.

1i.(t. x) E inl c.U for all (t. x) E [ii.] x R(1  where '.I is the control value set

as•-m,,ted to he a comllptact sltliWI of R•1.

(d) I Ile11at rix wilh (i~j) eletnilin tiitll ill repeated indi.es suininatioil conventiol i6 ol.tioni

0 [ O o f mr 0 ' t l ( 1 7 ) ] ( a- -O t r • ( / ) r 2 f i

byvx --- " u (.t( ), u) has characteristic values

bounded below by soine 1>0 for all (t q, u) E [0, T] x Rd x %I a.s. where i;1-I is the
pt

flow of

~~~~~* t -<,,i<<,> ..<, ,,
i=1I

k1



(• (•'~q ))-0 9 t•,tf) u*(t. •tt'~/))u*(t, ýt(t•t(r7)))] %ýT(r?)) = (2.7)

Ass ptiiin ioni (d) ,as will he veei ill the next section ensures the strict c( ivxit. in ii (f

- -tu,4[-•--.) Iq)f(•t(u).u) which tog'ther with the particular choice of the Lagraigc im lliplir jihl-

u*(t.x) a. the unique minimizer of

iE "Ll Oq O xj

The characteristic representation is used to write the strict convexity condition in the form aipp.*aritig

il (d).

Assumptions (a. 1, c) imply that the value function of the problem (2.6). V*(t. x). is tl CI. ( (ie.

' in i1. (1' in x) unique solution of

ii\ *(t. x ) (tP x . 1( 2.'V
-• + mill~-., - (t.x) f(x.+u)} Ittr (x. g)-

\*( L =Ox) ) (2.

lhe asiljiipt ion that f and L i1nns lt bi hounded can b)e relaxed only as far as allowiig mlivi.i iio lio c

"*siibliiear growth" [15)] i . V. 1.,0 3. K, s.t. I glx) I < k (H+ I x I'-(. This is becatist- of ,ling Ill'

d.couti • l i ll x1  = o uit 1 l hca iid all' of needing to ensure that qt (given by (2..1)) does not ,.xlflidi ,.

1' 4



2.1 Main results

Our main Lagrange multiplier theorem is the 'ollowing

Theorem 2.1

Consider the following family of determinisiic optimal control problems indexed by E Q' CQ

1'(Q')=l ( see Definit ion I)

d'It "= "" (fit) [(Q•t(7t) ' it)- ½- -I gixgi(•ct(?It))]'. q0 = x0 ;2s

']"

0

where .l (71) is the solut ioll of

(1,,= g(•) o dw0 (2 .%)

A',ullic (a) - (d ) anid o]efille

0.-• ,; (= - f,ý (•(l) *(t, ýt(,M)) (:2.1W1

df.
where fu = [ <I: i < id. I < _< m.

Then u*(t. 41(?l)) is optimal for (P'") a.s. and so u*(t. x) is optimal for (2.2) and if we di-liod, by W(;.

i1) the value function of (P'-) we have

W(t. ?I) = 0 o0.- o C.-, I
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f X)
E (t,4 W)) (211

and V(t. X) := W(t. (x)) is lthe value function for the problem (1l.2)-(1l.3)-(2.2).

'The basic idea in the proof of this theorem .s to use first the deterministic dynamic progranllitiig

app~roach pat hwise for (2.3).(2.1) to obtain a random (robust) HJB PDE. The Lagrange miultiplier will

be clioseit so that the minimizer in the HJ B MDE is the same as the nonanticipative (feedback) optuiial

cont rol ii~ 4(t))assumtied to tako values in) the interior of "LL.. For this we need the strict coii%4ix it. ini

it of the expre'ssioni to he- ittiniiiizetl in 11.11 PlDl and Ji to be such that lhe derivatieivi in n1 oti,

)xre'.i on vanishies at u *0, (it.47)) (interior minimum ).'Fhe characteristics method wilt be iisi'i to elisliurr

that t here exists a C' 1.2 solution of this pathlwise Hi B PDE so that using the verification I lioorvo'i

, i (7t~(7)) will turn out to be optinmal for (2.2).To characterize the value function NV(t .;j) ini

Trofxa soltiitionl of a11.1 SP~ l %%e) will approximate the Wiener poesby linear iiipito

and we will shwthat H.l 1- SPDl)I appears as limoit of a sequence of randoiti 11.11i P1)IK'.A~ eragitig

MH .1 5) )1 we get the .,econd ordler pairabolic PD)1 of stochastic dyniamiic prograii iniiiglTi. i wa~y our

proof ext ends the \Vong-Zakai type rvtidis [201] front differential equations t~o optimal cont rol liroblfliiiý

(d. nalnic programiniiiig equat iomis)I see also the remark after the proof of Theoremi 2.1 and~ [51 where I lie,

e Ke.lnb continiit16 of lie cstoC paths was used). It is for this very' imprtatranta

will prefer a rat her leingthby approxinmat ion argurnent for the proof of Proposit ion 2.1 helow. One canl

trv to obtain the value fuiict ion in ternni of x by proving a generalization of' Ito exteittlio rule to

caletia atehe differenettial Of' W~t .- 1(x)) as lie random field W( t.7)) is non adapt ed .Tiis will (Iirect l%

shiow that thle random IIJ B PDL. is the robust equation associated to IIJB1 SPI)I via t lit

traiisforijat ion x=4t(?) given by the solution decomposition formula (1.2). We used the antt,;patiye

lit) rube of Ocone and Pardloux [1-5] which requires Wiener derivative growth estimates for t it'- rauidoiii

fieldl W(t.r1 ). This app~roach was detveloped in (6].

We start by proving the following result which is essential in the proof of Theoreni 2.1
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Proposition 2.1

As',unIe (a)-(d). The value function of the problems (PW) with A (t. ri, w) definied by (2.10) is the

unique C1.2 solution of the random P )E

ANt, r) 0 (t, i1) (-•x)'Yr)[ (if (r), u*(t, ýt(rf)))

Ot Oil ax

d a- gix gi(ýt (71))J " j (,Ct(Ij). u*(t. ýt(lf)) u*(t, ýt(r7)))] 0 (2 12
i-I

%V (J, 71) = 0 o ..0 l

where IC,(Y)) is the uniqute nonexplodiiig solution of (2.9). V(t, x) := W(t, ýII (x)) is the unilque (C2

soltitiol of the backward stochastic partial differential equation (SPDE)

)v . f

dV( . X) + L . x) [f(x. ti)t. \)I - (x. ,*(I. x)) u*(t. x)
Oix du

d
- g gix))ut + 2--(t. xj glx)6dw = 0

i=l

V(T. x) = O(x) (2. 13)

or m Ifo backward form

£ (l\(t. X) +* (I. xJ ]f(x. ,1 (t. X)) - (x. u*(t. x) U*(t, X)

r (ZK (. X) gg*,))) I d \' I .(t. x) g(x) ilwt = 0

V(T. x) = 0(x) (2.11)

Remarks

1. (2.12) is thus the -robust equalioi'" associated with the SPDE (2.13) (seet Cannarsa and

1. 4
Ve r [,:])

lb_
G1 _



"2. "'•' and " 6 d" denote the different ials corresponding respectively to lto's and

St ratonovich's backward integrals (see Kunita [14])

3. A stochastic Hamilton-Jacobi partial differential equation was considered in Bismmit

[3. p. 323] in the context of ran(l( mechanics

.4. A different approach can be pursued based on pathwise application of the deterministic

nmaximum principle. The Lagrange multiplier can then be defined in terms of a random

adjoint process. As such an approach will not involve SPDE's and thus we will not immake

u.c of stochastic characteristics the smoonthness assumptions can be considerably

weakened.
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2.2 Proof of the main results

Two lemtas are required in order to prove Pioposition 2.1 and thus Theorem 2.1.

Lcmma 2.1

('onsider the sequence of random PDE's

OW" (91A°nI (,,) [f (ýn(,,), u*(t, •[n(17))at (t, 77) + (t, 9 x ) ' t

2I d i Ai " (' ) ,t(' ) *(t, cIn(17))) n* t (,,))] = 0

\Vn(T]' 71) = 0 o !.r)(2.15)

wit h

den

•'0 ( ) : q(2, 16)

-I I

%%here il''t. is) is the piec'ewise linear approximation (-linear interpolatiot") of tlie d-ditnensional

\\icner Ipro'es,,, w0t. ,*)

I*"(t',)= w(tk) + 2"(t - L) (w(tk+l)- w(tk)): t E [tk, tk+l)

where ik = k/2 n: k = 0. 1 .... [T/2"n so that

")(t. ,) = '2 n (W ( k+ l) - w (tk)) (2.17)

for I E I'k, tk+l]

Vnder the assumptions (a. c) the sequences of random PDE's (2.15) have unique C 1.2 solution for each

9's



na E N and NV,(t. x) Wn(t, (C4'Yf'(x)) satisfies

(t )+ (c, x) [f (x, u*(t,x)) - 1 g Ox (,U*(~

x1 u(t. x)J + g(2.1i-1

V'~(T. x) = O(x)

Proof

For the 'piecewise' linear approximations i cnsiee bv ehv

avl O,((nyi j)ýn(nyiOW"(. () -t (xt, axv y 1 t W x

01 01 ,A)( I W) d (

all= gix

Ofil (N. 1n*(i. X)) 1*(t. x)] - (I. (ýl'r '(x)) ( ((y1 ny x) 1 ~ ) ~

In-cause

I Sang now

(O)xO

(a W'1  4 (-Y (W,'-' (x)) = In (dlue to (a), tn (x) is a.s. a flow of

(IJifreomorph ismls and 4no (ýn) (v"=x



we get the required sequence of random PDF's for Vn(t. x). To see that indeed under the as..,umpliol.,,

made. \Vn(t, r7) and Vn(t, x) exist and are a.s. C1 we consider the corresponding claracteristic
Sepla~~i,,g 1(71)'in( 2.) by ý'(rjl).•• ) () t •.

eqjuations (obtained by replacig Q i (7) to get j'(11)) and

representations of the solutions for (2.15) and (2.18). Reasoning similarly to (14. Lemina 6.2(1) ] for

the integral formn of random ordinary differeotial equations we write forward equations for the inverse

of i lie flow of characteristics for each fixed t E [0, T]):

(4. 11 ()- I ( , 1 tLn Y 1,j 0 ( ')Y ) = 'I

wheire

d
ts~ ~ n*S 1n Y1(1

1s )7 t s<

anid respect ively

( I (( .I ,

i1=1

-1 Of u S * W n 1-

( )- r 1(x) = x : t <s< T (2.20)

For each t, n. for almost all w E Q2 (2.15) and (2.20) have unique non-exploding solutions ott [I. I

1it1dler (a. C). It is clear that for boinided f which is C2 in (x. u) and bounded g which iq (,2 (2.20) h"~

for (-%ter% n E N. for almost all -; fiQnd x E Rd a unique solution on [t. Tj [3. 1). 38]. TIo see thatt



(2.19) has a non-exploding solution on [t, T] we have to show that an(s, x, w) satisfies a linar growtlh

condition for- each n a.s. We know from [3. p.39] and [15, p. 57] that for every t.'I. 3 > 0

l •--x -I(x) _(I + I x 12)3 : s -[t. T] (2.21)

for some family of random variables {C'0(s)) in E N which is uniformly bounded in l) for all p > I i.e.

sup EICIP<oc (2.22)
in E N

and sch lI hat for every 3>0 and ,i > 0 there existr constants C , for which

PW( 3

> C) (< 2.23)

fOr am• (>0. In fact in [15 it %s show, that (1) ý(x) satisfies (2.21) using E sup ý _(x i < < I
s O '<

+ x 2)1)/2 for p > 2 and Sobolh•'. inequality. Using the fact that

I < xI

from Ikeda and Watanabe [10, p. 506] one shows that also E sup I s(x) iq
s_<T

< C(, 1 It I q'(di/ for q >_ 2. Here c(,. c" arte constants for each fixed (1 2. n E N.

l)tii to tlie assupll ions we madth and diit, to (2.21) in which we take 3 =2

d
I F' 1(s. X, , : I f("(), u*(s ( ) - I 0 )

Of (,n(x). u*(u ýn(xl)) u*(, ,','(x)) I < 4n (2.21)

anmd

Ia"(s. x. ("l< ( )1x ll l' 1(s. x, ) < 1(.) (I + lx ) a.s. (2.25)
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for a uniformly Lp bounded family of random variables {fn(w)} n E N for any p > 1. 'The a.%. limnear

growth of an(s, x, w) (2.25) ensures that the solution of (2.19) does not explode.

'rhus we have the representation of the solution of (2.15) and (2.18)

W)" (t. 11) = o o•,' 0 ( • 1 () =o 0 '0 o ,r)- (2,2

V" (t, x) = 0 ( (x) (2.27)

The uniqueness of the i .1,2 solution F,,r a.a. of (2.15) follows from the uniqueness of the solution

provided by the characteristics met hod and the uniqueness of the solutions of (2.19) and (2.20 ).

Lemma 2.2

dtder lit' assumptions (a. c) for thle linear int.rpolation approximation rn(t, .) as in tie statlenlc't, of

l.,inna 2.1 we hiart for each t EU '. 'l]

V" (I. x) IL V(t. x) 2.2,,

W\'' H. ,1)- P W(t. ,) (2.29)

t . (x)) - W (t. Ctj(x)) (2.30

tniforndly in x on compact subset., of Rd.ilere V(I. x). W(t. i) are the unique C2 and respectivel) .1.2

,olhiion, of (2.1) and respectkiely (2.12). -L denotes here convergence in probability as i-x.

Proof

For f and g satisfying (a. () we get foi each t < T

Wi I (2.31)

where C,5(x) sat isfies
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rI
d9 '(X) = [fK(I(x), u* (S. (()))- C d 1

Ol x), u*(s, g(x))) ,*(s, ,t,(x))j ds + g((,4(x)) o dw, (2.32)

C (x) = x: t < s <T

This follows by applying the convergenice result for the inverse of flows of Sl)1E.. with lsnitdei

coefficients [3, p.66 and p.39].

'lo 1)ro~t' (2.28) we use now the representation (2.27) of the solution of (2.18) given by the

characteristics method. Assumptions (a. c) ensure the existence and uniqueness of V\(t. x) for each ,i

E N and due to (2.31) and (2.27) we have for each t E [0. T]

\'",( I. o 0 tr(X) t).:2.33)

4in iforlyJ11 ill X oil conl)al(cl Subsetls of R(d. Bitll under the assumptions tmade we know fronm Kunitida [1*2.

Sec(tion VI] thai the' imique C.2 olitlif1 of (11) is V(t, x) = 0 o (x) 0 o -I Il(X) when. ý, (x)

+,!isfir'.

(tIn = [f(t t(x ). U* tt (, .K))) - gi((t(hx)) - tX )

11*(t. ,(tx))) u*(t. (C(x))] dt + g(( 1 (x)) 6 dwt (2.31 1

C.r(N) = x

and CI(x) is the unique solution of (2.32) for s = T (Kunita [14]) so that (2.28) follows. The flow of

(2.34) was denoted (tT(X) as it has terminal condition at T.To prove (2.29). (2.30) we u.,e, the

repre•enlation (2.26) given again by the charaeteristics method for PDE. We will prove firr-l that for



each I E [0, -r]

uniformly in q/ on compact subsets of Rd. (2.35) will then be used in proving that the followi•ig

convergences are valid uniformly on compact sets of Rd. for each t E [0, T]:

11'1 )- 0(ýn I P

Wt( ) ' - 0 V1, 0 (4 'OtY (X) XV- W~t t(x)) = e 0 4-F 0 0't 0-(

(2.34i)

w "I (t. , 0) 0 o 4ý1. o (I,[.-L' (,jj _ V(t. ,7) = 0 0

• 1 I = -'I-o

C- 7 {•= x• 0 <*

d(cos) (X) 1 t-11

ds =(is

Wi I(•i; l~x= x:O _ t

"•'" = ['' "t-s

(00, (x) = ( <h )" (x)

0

alld

''- I U*(s

trx 31 t



d

x ,,*(... tsfl•;l )ll := R(.+. CItsh,n.•

4'1t() = 77:-t <s<T

In what follows t is a fixed value of [). T]. The systems of random differential equations (2.19) and

(2.39) have unique nonexploding solutions (v't)-I. •"• a.s. due to the a.s. linear growth conditiou or

.1=1 (2.21) and to the a.s. locally Lip.ciiit' property of an(s. x, w). a (s, x, J). The Ialttr rflhuw- Froml

(i. (c) whl('h imply that

W,"¢o.. (X).

art. i., [3. .U].Take now K a ,,nact in Rd and define for R>O

-K = in f I., E [I. T] I supl) I v- ,.1

1) E KrHi" =inf is E [I. T]Isup I()(,1)I 1 2!R A T
Yj Eh

No,,' for 0 < < 'k A .k., we have
R hav

S"(vl'0 - ti (1') S I a"(r. (V'n )-I (q, ,).-.' a T('')' ')

x dr + i a(r. (vtr'" (0). W. - a (T. , (q), w) I dT

t

s

f sup I a"(r. (•.r()- w) - a (i-, (,,In)-1 (q), w) idr
Jt I < "r < TA• : A ,1" i r°t

tTR AR
E K

. I



+n ,un• (11) + ,,

< << k Ar

q E K

X 0(, C,- ••t ('q) I d r < T•,p an(r, x, w)- a (r. x, .•)

lxi < R

8aa+ I'
+ u SUP (r •,w rr.d dr
t < 7-<T O

tlyJ <2R

whre ' 1 tr(,.;) E [0. 1] a.s. for every it E N are given by the mean value theorem applied a.i. ftol ,.ich

n. Using the estimates of Ocone and Pardoux (1.5, p.57] we get the following estintate

t < 7 < '1 0 < r<T Ox O 0 < r<T
'y _ •15 2H, ly: 2H jyj <ý 2R

x + FUu t l (T, (x) I < M (l,(,,.) (1+ 4R1) + (L(,.;) (1+ 4H)))x 0) < 7 < T! '

jj _< 2-11

: H{.)( + 4 R2

,,here l.(.). ((..)are I.1 bounded r.v.*.- . We use again the notation a(r, x, .) I(s)l"(Cr(x).

,,* . (x 1. Due to (a. c). F" is boundeld(l and so is Fx + Fu ux where F. F denote Jacohiaiiý witi

respect to the first and respectkivel. s.cond variable. M denoting their common h ounId. U* i,, thil

J.acobiat| of u*(t.x) with respect to til. second variable. Applying now Gronwall's inequality a.,. we

oblaill

As (?/, W) !< exp ( 0(() (1 + 4R 2 )2 T). T sup an(r, x, w) - a(r, x. w) V
0<r<T

IxI <R

S<rK A rK.'

361



We show next that

anl (7, x..) a (r. x,.)

uniformly in (7. x) on compact subsets of [0. T] x Rd. We have by the mean value theorem for F

Ian (r. x, )-a(r, x., ) I <- (L 7 - I +

. , -T~) s p / ,r.-1 .(oT• (x
xl Fx+ FuuxlCIn(x)- rX) <1s t [\ x j x Ox x M+ ,

0<r<T\XI k8x l.)Ix < 2R

x(l + - 2) sup si(x) - r(x) a
0<r<0 <

x < 2R

Using now the uniform convergences in probability on compacts

W'x LI' ýýI X

Ox/ (x) Ox) (x)

which hold nnder (a. c) [3. p.39]. [10. p.516] we get V, R>0. 6 3. NR such that V n > NR

P( sup la"(r. x.~atr-,.x.w < 6•) > (Lw< L

o < r<T
I i_

& ( sup I n x-(x)_ý (x ) I < 1 i ) & ( sup I (a ) '(x)

0<r<T (+R2 <<T
I xl_<2R Ix 1_<2R

- (`ý' (x)I < -L)M 2 1 -L + I--+ I- -2=,-,for L,=3.

This implies that for a fixed compact K C Rd V. R>0. (>0. 6>0 3. NR,K such that V n> NH

P' ('\',' •) < 6 for t <s< r A and Yj E K ) > P((I(w) < LO)

A7



&( sup Ian(r. x, -a(r. x, ) j< 6 (Texp (L,(l + 4R 2 )2T))')) > I- + I(i<r<T - L'

x -<2R

-- I= I- for L' 6("6 36

so that using the same urgument as in Shreve and Karatzas [11, p. 298]

P(Tk < rkTn) _ P(sup (v" )-'(r/) <6+ sup j t ('j)j forR REK ?7EK

<s < Tr A K _n 1 3
_-R TR' >I-/

Finally. because

Hll,, P (sulp I '• ')I< - V.. -, [t.T )=
ft--x ?I E K t

hllk P (rK = T) =R-X R

Ox. V. >0 . RKsuch that V. H> h P> ( (7 -T) ŽI - )we obtain for any t E [0. TI and for
Rk 3

aly compact K C Rd V, '>0 3. NK1 := ;.I\' such that V. ii >

P( sup Ak(.) > ':(A .q,) < 6 for t <s<<T, 11E K
t <.S<T

P((As (qj. a) < 6 for t < s< 7K A rK~fl 17 EK (7- = ( T ) - < Tv))

RI R KT R)-&

S,3

and thus we managed to prove in paifiellar for s - T (2.35). We can now prove (2.36')

For t< < rK A rK' we have
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13s("" •) -- = 90 6 ° ,) (/) - Oo 0 ' (,?)I < I x II 0, 0 (,•nP.- ',)

I t S 0 ýT i el?,u

" (0.)) I r] 0 (1 0 - T (0,N )- (71) + I 'T 0 (•i,•s) (V, )

0•T . ) < M 0,nnI1

x (Lo (ij) _).+ (1.[y.<)-q (I,- ( ,,)- (,) I < M u j. (x)
SId~ -] I. + •- s ts t,, U.•Ir•i• -t,• (71)l _ M SUP ., .

Ixl <R

- r(• I + NilL (w•)(I + 1112) ,, sI I) ,n )- (,7)- , 1; (,7)
< < t< s

?i E K

For a compact K C Rd. V. •. ý">( 3, 1I," and rF =! and f R. :- cih . ,. Ž

PI(B,(,,. .. ) < A fOr t <. < 7 . • " '.jE K ) _ P(( sup ri Ixl< Rk
I x 1_ R

< , L...) < .) . sup 1t -1  (,0) - hS (,/) I <)2N I < S < T "s 2ML(l+4R2)

E K

_ 6 Gi 6 3

II I-1ce wc obt alin

P(Sul) s(I,• < 6) P. I(IBs(?/,.• < a t<s <rA A "R 1 E K) and

1 E K

a,, (r•= T) anld(rj _ rRT'")) > I- I+I- I- 2 1--

(2.36') is lhtus proved. Similarly ouie proves (2.36) by applying twice the mean value theorem. hy

deriving with (;ronwall's Letiuia the esti• iuate

r. H3



sup I(I) exp I + 4R2)2 T

it1 < 2R

with C () all LP bounded r.v. as before and by using the convergence result for each t < T

(lt-1(x) P €) (x)

uniformly in x on compact sets of Rd [3, p. 661).

Proof of Proposition 2.1

Consider (2.12) and assume (d) and u*(t, x) E int CU for all (t, x) E [0, T] x R"' as ill (c). Ilhei

because

\\ 1.1) = 0 0 C€1 t'i q

Oil ut .t, J)

and because 11(t. rl,., ) is strictly convex on the compact cU, for all (t, 17) a.s. where
(t.u. ) %= V (t, t\ I f(•t( /),u) 1. d ( f

I () 2 gi*gi(t (W) - T. ' t(17), u*(t, "I (IM) u]

w'c have

miii H (t, Y1, u, w) = H (t, q7. u*(t, w(,)), w) a.s.uEcUl

so Ova. with A (t. q, w) defined by (2.10). W(t, ,) ?7 0 o qt (i") is a C solution of the Ilamilton-

.Jacobi-Bellhnan equation for (P') a.s.

KI



i=IOw fo w ('7, [f(ý u)t d
m-"-+rin (911 71, x/ (r)[f2 1•,u) gixgi(ct (77M)

at u E CJ. i=

+ Jr (t. q, w) u} = 0

wV(. 0/) = ,o 0 (2. M)

As solution of (2.40) W(t, rj) satisfies the optimality principle inequality

w 1'o* x) O - f ,t (r. ?1,) (-k- l (117) 11 (ý, (71)d u, (r, ,r(,?,)) u (r) dr

to

+ W(t. '9) a.s.

lFr aiiN 11(t) E A where q, is He' solunion of (2.4) starting at t0  front x. We al.so ha;,' uider our

assu, ipttious (a. c) that th, solution o" i2..4) for a = u*(t. ýt( r)) denoted ij* . exists., is unique, non-

exploding and

d\\,(. fitl O\ (t, OWI -•• _(,. , it. (

ff•\~ ~ (,. /it/°•~l

d t O'(t, 011 d tF

= •,-- (t It* (I/,) (ý, (,1,). " ,, U t,,)) 0U* (t, ,,7))a.s.

Iell b%' Ilfi Verificat ion t ,heorem (s.e Fleming and Rishel (8, p. 87]) u*(t. , i(,;))is opt•imal for (P-)

for almlost all ; E Q2 and W(O. rW) ik th, value function, of these control problems parametrized 1) . E Q).

It renmaias to prove that V(t. x) W (t. I (x)) satisfies (2.13). Using now Lemilas 2.1 and 2.2 we,

have for each I E [0, T]

wn t. (X) )) f W (t, 1t (x))

0=( (. -(x o 1: (xl = 0o o,. (x)

4 1 ,



unifornilv in x on compacts of Rd. As (2.13) has a unique non exploding C2 solution (becasuse of

Kunita'. existence and uniqueness theorem for SPDE's from Kunita [12, Section VII whose conlilionls

are met here (see (a.c)). we must have

V(t. x) = (t, ýI (x)) = 0 0 CIr (x)

because of the uniqueness of the limit in probability so that W (t, rtI (x)) is the unique C 2 solution of

(2.13) and Proposition 2.1 is proved.

We can now pass to the proof of our Lagrange multiplier theorem for anticipative co(t rol.

Proof of Theorem 2.1

A. we saw in Proposition 2.1 with tie Lagrange multiplier process AT(t, q1. 6) defiued by (2.10). the

optimnal conirol for the stochaistic noumanticipative control problem (2.6). u*(t, ýt(?I)) is optimal for the

anticipative optimal control problems (P-) for almost all -,; E S1.

Dult io our &ssumupt ions Aý1 (t. •j 1(x)) defined a cording to (2.10) by

1 (W. •'(x)) ,\ (t. X. .(L) = X- f, (X, u*t. x))

i1 I.1 (d IP x (1t) - integrable for x = w the olition of (0.1 ) corresponding to some [it E A

T "I"

E f I \T(t. Xtt W) Idt < E f IVx (t, x,) fu (Xt, u*(t, xt) I dt < oc,

0 0

I his is proved in the following way. First because fu' 0 are bounded; Vx(t, x) = Ox(C 1 (x))

(x and x,=ýtot, we see that via the estimates for flows of [15) and 13, p.39,50]

sup I4t(x)j : k(,,)( i + Ix12)

t_4

(0-



sup I '-X) < 1 Gý) + X
t <T -~x

Vx E Rd: k(,').l(w) E n LP(Q) we have that the L' integrability of the Lagrange multiplier cortespŽ_l

down to showing

T

E f k(,)[1 + + I,7tl 2 ))2]dt < c,

0

and thus reduces to proving

sup EI171t2r < x Vr> I
t < T

Hils follows as usually from lite exitentce theorenm for (1.4). Consider the successive approximation

sequel'ce

77*= u4n=x 0 + f(~r(1 (r TI n 1,u,)dT-

WVe assumed before without restricting generality deterministic initial conditions, so that

, , 2r <.."
<1

By induction if

sup EITIn'I 92r < ,x Vr > It<T

then usinug again the flow growth estimmates in the succetsive approximation sequence defined above We

have

lbfe1



El,,n,12r EnIt 2
_t < Ar + Br + Br E7, 1n- 2 dr < o (2..1)

0

where

,2 r o r r + 1
Ar = CrJXOI" Br = cr(NIT)"(E(l(W))

2 )2

witli cr depending on r only and M the bound for f. Due to the growth estimates and the a.s. smoolh

flow of diffeomorphism property of ýt(x) the coefficients of (1.4) have linear growth a.s. and are locally

Lipschitz a.s. so that the existence theorem for ordinary differential equations can be applied almost

surely to (1.4t) : the successive approximation sequence convergences a.s. to the utnique tion-exploding

solution of (1.4) which has thus finite moments due to (2.41) and moreover b. (rotiwall lhima

applied to

E),, 1/2 < Ar + Br 4 fir EI?/T)2-dr

0

"we la c the following estimate

EIrti- < ( Ar + Br)eXp( BrT;) Vt E [0.T].Vr > 1

We show next (2.11) . , (t. ý, I(x)) "atisfies (2.14) and because of u* being an interior optittmil (see

(c)) for (2.6) (and thus x) ) txu(t. x)) = 0) (2.7') can be written

\ t. x) + (t, x) [f(x. u*(l, x))- (x. u* (t, x)) u*(t, x)] + tr( g )

\'*(T, x) = O(x) (2.,2)

We average the integral form of (2.14) and we use Lemma 6.2.6 and Theorem 6.1.10 front [121 in ottr

particular case to interchange expectation with differentiation and integration and to show thai tihe

stocliastic integral has zero miean. W.- get under our asutnptions 4



p.- -

T

I x) (x) + (EV(r7. x)) [f (x, u*(r. x)) - (x, u*(r, x))

Tf (Ox ,au

x u* (7, x)] dr + f tr (12 E ggr (x)) dr (2.12")

t

where we denote again \V(t, x) :\%(t, t (x)). By the uniqueness of the solution of (2.11) (set,

[9,p.44])

= E\'(t,x) = EW(tt W(x)) (2. 13)

and thus

,It(t. W (x)) Of (X, u*(t, X)))IC A'r(T. x~) = E A' (I. __ (x)) - I. ( - (xx 0"-.x))

= I'ALK (t, X) - (x. [*(I. x))) = 0
ox dii

We have proved (2.11 ) and t he proof of Theorem 2.1 is accomplished.

Remark

I *,ing the convexity assumption (-I) the H. BSPDE (2.14) can be written

d\'(t. x) + nmin j Vx[f(x. u) - L- (x. u*(t. x)) ui + ½ tr (Vxx ggT(x))) dt
u ECLL d

+ Vx (t. x) g(x) dw, = 0

v(Tr. x) = 9(x)

where V "- ! ' V(t. x) is thit reit of the sequence of value functions for tile sequence of

f. - - 4 5



(deterministic) control problems indexed by n E N and parametrized by w E Q,

x n =T(xIt. u ) + g(xn) ,nb(•.,)xtt

T

inf EO~x~j') pCi(t. xn. ,,) ),ru(t)dtl
in [o(4P) + t u),

0

where

(A"(t, x. W))T - Vn (t, X) (x. u*(t. x))

with Vi"(t. x) being the solution of the sequence of random HJB PDE's (2.18). Using (2.,13) w"t have

the fundamental result

\*(tx) = E P-litt V"(t.x) = A'(tI,x)

showing how the second order parabolic PDE of stochastic dynamic programming results by taking the

linit iii probability of tile sequente,,ce of deterministic dynainic programming equations (2.18) (Mwlich

Nields the IIJB SPI)FE (2.14)) and averaging. 71ihis is the quintessence of (liet rlatiot twitw,.n

deterministic and stochastic optiital control generalizing to dynamic programming equations the

Wong-Zakai type results [20),[18] proving how solutions of SDE's appear as limits of sequences of

sohlitions of ordinary differe,,tial tquat i,is . Borrowing the title of Sussmann [18] *we can say that tIle

"gap between deterministic and stochastic" optimal control is filled by objects like H.JB SPDE (2.1.1)

The price to pay for this result was the lengthy convergence argument in the proof of Proposition 2.1

Moreover if [gi(x), g.(x)] = 0 for i < ij < d where

Og i(x) Ogi (x)
[gi(x), g.(x)] gi(x) - ! gj(x)

(i.e. gi commute) the value function of the pathwise optimal control problems (2.2), V(t. x)=O o I', W

is continouls with respect to the Wiener process (due to the characteristics representation this follows

L 1 16



from the continuity w.r.t. w(t,w) of the solution of SDE's proved in [18]) being actually the "Ixt'i.sion

b% continuity" to CO paths (see Davk. [.5]) of the value function V(t, x) of the problem

it =f(xtI ut) + g(xt) i,(t. J)

T
iif [O(XT1 ,) + JV.r(, xtl .') u(t)dt]

u E A f
0

where i-(t. w) are C1 noises a.s. and

• (t x..')= -•'x(I. x) -L• (x. 1*(I. x))

Here V (t. x) is regarded for each wE S as a map defined on the function space C1 ([0. T]. Rl) (i.e. V

is mapping tile path Space).

0

47



2.3 General Lagrange multiplier formula for the problems

with integral cost

If we consider optimal control problem.s with integral cost, Theorem 2.1 can be generalized as follows

rheorem 2.2

Consider the following family of optimal control problems ,, E (2'

d

i=lI

(P~') I1 = X0

I T

,h )d [0 °4T(/Tr) + •l (,. ý o 0l,. ut) (it +- P (t. ,,.) u, dt]
UE fA

U 0

:\ss.ille (a) - (c) an(l

(d') L(I. X. LI) is Co linlllo s il i ('C ana)I - in (x. u). convex in u for all t. x and

T

-1 (1i . 0I-r ' u*( I. ýro ;-

A l_ (. 0 "- 0 , *(..-. o _ . , * T o + o . (77))
(011 f

x ,-x 1/ (11) fuu (ýt (17) , u)

has characteri.tic values bounded below by -)>0 for all (t. j7, u) E (0,T] x Rd x RL a.s.

I)efine

T
IT (t, 17. W):=- { ýT [0 oT 0 %t'1(1() + f (L ( C. •. o r, o . ! (17), u*(T,crovrovt I(,/)))

HL t
_ (r- C 0 V. o 0;l (,j). u*'r. a, o Vr 0 't* (,?)))u*(r,, o Or 0 a't (q)) dr])0 V1

• 4



"()t dOL

Then u*(t, 4t(i)) is optimal for (P') a.s. and

E WS'(t. t I(x)) V*(t. x)

E Vr(t. 4-1(x). .) = 0

where F'(t. i,) is tihe value function of (F") a.s.

The proof is identical to that of 'nlihoiem 2.1 except that this time the integral cost term changvs the

characteristics method representation for W(t. q) as follows

\Vt11) = "tL ..-~ )=• otl•(

Sher' L . 1.(q) is given a.,s before by (2.•9) and

_ -l.(1i *t 0 C1 (1i).u*(tt o t, (I)))) + ! (t, 4t o V't(7)u*(t,4to)ut(r)))

)T(I) = 0 o ')

t- - ---------



2.4 Example: nonanticipative LQG Problem solved pathwise

Consider the standard nonanticipative LQG problem

dxt = (Axt + But) dt + (' dwt

() x = -0 (2.15)

T

i,,f E[f (x[ Q x, - u I Ht) dt + xT, FXT]tUEXf

0

instead of solving this stochastic optinmal control problem let us consider the family of determinislic

problems

d o A ( , lt + ( 'w ,) + B u t
dt-

10 =0 (2.16)

(P")

inf + +(', + )T Q(l11 +-('w) + Ut' Rut] dt + (T+ CWT)T F

""I11 E

x ('j + ('wT) + f A0't. w ') u, dt}

We need to determine the Lagrange multiplier ý (t, r/t. w) such that if u*(t, x) is optimal for (2.45)

thenl u*(t. 77 + Cwt) is optimal for (2.46) and we have

p
V*(t. x) = E W (t. x - Cw,)

where V*(t. x) is the value function for (2.45) and W (t, s7) is the value function of (2.46). The

deconmposition of the solution xt is here

51)0



xi "it + CwI

The desired value of the Lagrange multiplier is (see (2.44) and theorem 2.2)

r(t. x. ,j) = - (t. x) B - 2 u* (t. x) R

where u*(t, x) is the feedback optimal control for the (nonanticipative) LQG problem

u*(,. x) = - RIIBTStx

St being the solution of tile Riccati matrix equation

S, + StA + A1St - SIBR-t13 1 s -t Q 0l. ST= F

\(t. x) i., the solution of the IIJBSPDE

dV r miin {Vx(Ax + fu) + xIQ x + uTRu + Xt (t, x, ,) u + 1 tr (V c'Li E .. 'U

x (It + \.(X (. w - 0 (2. 1Th

\"(1, x) = XTFX

Ie minimizer UT ( . x. ) is

T*(t, x. 6) = - I [BTV I + -] =- TSt x = u*(t, x)

We look for a solution of (2.47) of the form

V(t. M. .0) :x•sx+ .I(•x+•,
xc + *½'(wIt

i
r. 51



I
which we plug into (2.47) and we get

"Xst XJt + 2dX3• x + d-?t + [x' 1 x + I tr (C'TSC) + X St Ax + -24 Ax

+ xT AT St x- xTStBR-1BTSW " it + (2 xTSt C + 2ý C) dwt = 0

By grouping the terms

xT(.St + StA + ATSt - StB1-IB1St + Q) x dt + XT(2dt + 2AT3t dt

-4- 2S,(.' dwt) + dit + 2itr C(T )dt + 23t C lwt= 0

we see that we Imust have

+ StA + ATSt " SBir'113 S4 + Q = o)

2d1. + 2 AT t dt + 2 St dwt = 0
d t + t r ((CTSC) (It + 2=' ( dw - 0 (2.49)

"wit h leruilial conditions

S.1. = F

1= 0

j.= 0 (2.50)

because

xTFx M x +s x I + iT(P)

in view of (2.48-2.50)

x(. X. ) R ~~(~

1 iadpe~dnt ofx du to f(x, u)
Sindependent of x due to = u) = const. We recovered thus the results from Davis [5]. if we

multiply the equation for djt in (2.49) by Br to the left and we assume BBT nonsingular we obtain a4b4



stochastic differential equation for T' (and not a stochastic partial differential equation ItJB 1I a.

iii the general nonlinear case)

d'r =- BTAT(BBr)-IB r (it - B'rSt(' dwt

T= 0

The robust equation of (2.17) for W(t. rj), where W(t, x - Cwt) = V(t, x), is (see (2.12))

TT (t, Y1, )+ min (A (ij + Cwt) + Bu)+A'(w)u + uTRu

+ (1i + ('w)T Q(11 + (Wl)-

W(T. i) = (1/ + ('WT.)' Ni"( + (w 1.)

with solution W(t.i1 ) = (i,+Cwtw)TS(,,4+('wt ) + 23T(r1+Cwt) + t

Remark

'liht optirnal control ui*(t.x) is not bounded but many of the assumptions of our resulls (-au I)--

weakened: 91 need not be conipa(t as w'. use here t lite fact that the expression to be tiiniriiid ill II.1B

I)I)E is quadratic in u: f can be linear in x as E (x) = x + Cwt so that -f-x(x) = arId IaIdi1 lill'var

growth in x of a(t.x.w) holds a.s. ensuring the rionexplosion of 4t,(17) in (2.7): the characlerislic i•,ethod

works withi 0 having Lipschitz continous derivatives so in particular with 0 linear etc.



3" Stochastic anticipative optimal control

and almost sure (pathwise) optimal control

We consider now the anticipative stochastic control problem

dxt =f (xt, ut)dt. + g(xt) odwt

X0 =X0

itif E[O(x-r)] (3.1]uEA

(pO)

xt E Rd, g(x) = [gl(x) gp)(X)]

p
f(x) = f(x) - . " 1 (x) gi(x)

1i, which we associate a family of determniisti( optinial control problems (PO U) E via the Sl)[

,ohitioi decomposition formula (1.2) x\tx 0 ) = to 1r/((x0) which is our definition of solhitmn oI ( I. I br

E .4

d ijt ( X)d 0 , O • (r 7/t ( x o) )) ( ýt 0 17t (X o ) u t )

rlt(k'O) = 0 (3.2)

(pO,•))

inf [0 0 ý'(T(,"O( × ))u~ E A'

where A is the class of measurable functions u:[O.T]--cLL.c, a compact in R"'. The relation betwe.n

(1,0) and (P 0 .') E W' is

inf E[O(xT.)] = 1if_(0 o T(9T(i0))))u uE .A . E A

5.1
-- _ __ ---- -



provided again that the infimum on the right is attained for each w and the function assigning lu each

: the minimizer of Po0 w is measurable, which will be the case under our assumptions a., we, use a

measurable selection . This shows that we can solve (Po) by solving (PoW) for o E Q and averaging

the cost over the sample space, Q.

\Ve make the following assumptions

(a') f is C4 in (x,u) (i.e. with bounded mixed derivatives up to order 4) and bounded. gi

are C5 and bounded for i 9:I.p. 9is C5

I (') t ihe nonanticipat i' u sttochastic opt imal control problem

dxt = f(xt ut)dt + g(xt)odwt

X0 =X0

inf E[O(x('I))]
tiE X

has a feedback solution u*(t. ",1 continuous in (t. x). (72 in x so that, under (a) its

%alue function is the (.1 1 nu1iqU1 oluition of

-- 4 nn fx~u~'+ tj2 ggT') -=0.
Cit u E iL Ox OX2

V*(T.x) = O(x)

(Thle smoothness assumptions on ti*(t.x) canl be relaxed if we impose in addition the nnifornn

parabolicity of gg T [8 ,p. 129])

(e,) Consider Y(z.x) = inin {Z f (x.u)) z,x E Rd. Selection lemmas exist (see Benes

[2. Lemma 5]) which give a immeasurable or even a C1 minimizer O(zx)=u 0 (z,x)

such that Y(z,x) = T7 C (xo(z.x)).The implicit function theorem can be used to find

(I



w¸

conditions for smoother minimizers We assume here that 0 is C4 in (x.z).

Corresponding to each member of the f.mily of problems (3.2) we have a random HJB PDE (i.e. PIE

with randoin coefficients) for the value function W(tt1 ) inf [go (T, t. r/))]:

57t + rain ( 8"t)(,•)f(t(q) u)} = 0 (3.3)0 t u C c dif o r/ .

W(Tr/) = 0o T(r7).

Using (e) we get under our assumptions a minimizer in the form

k°I0 t,,?.a) = J A V• eo. 1•'t~
S• i),l ki~x) (W.) ýt(h))""]

which substituted in (3.3) yields

O WOT•O • -/J~ ' -I (8(W) , O~ tY
((?I +t,7 d,--x (t.11" =II I~ 01.4 al (3.1)

W(T.r7 ) = Oo0(()

I'sing from (1.2) rj=(tl(x) we ge tlOw expression of the value function in terms of x. the inilial Nalue

al timie t for (1.1)

NvO(t~x) := W (I. ýt I Wx)

60O(t,x.,d) :- 1 Ot.i Z x, I W )-

and it will be shown that V0 (tx) is the unique global C2 solution of the (backward) stochastic P)1K

(Hamilton-Jacobi-Bellman stochlatic PDE)

f dV0(tx) + O (t,x0 (x.1 0 (tx),x))dt + OV(tx)g(x)6 dw_ = 0(

Ox tt Ox1 V0 (T.X) = O(x)

._56



This solution is VO(t.x) = inf 9[x(I :tx)] and is expressed by the stochastic characteristics method
u EA

as VO(tx) =t o0 t' (x) where

dc~ ) =[tf(,tp t(x), ~x ,•~ ))+ rxf( tx ,( tx ,•tx) ,(q x ,tt x)d

+ g(,pt(x))6 dwt; ,;,1,(x)=x (3.(i)

d t(x) = - [fx(Vte(x), O(Xt(x). ;t(x))) + fu(•Yt(x), O(,t(X), qt(X)))O (Xt(x),Ot(x))] T xt(x)dt
d
- gT,(pt(x)) x t (x)6 dw : \T(X) = wx) (3.7)

d(• {( ) -- •-x fI ,-tx ) ( tx),tx O (Xt(x) , O t(x)) t )

dvr
(X) XTX U(ýtOtt

V,. =0(x) (3.=)

where fU = is the n x m matrix of components fi = u = 0(L..) g = etc. -6" is the
whr u= u OU k . ~ ; PP 0,

Stratonovich backward differential notation and (,t(x),Xt(x)) are defined as in (1.8),(1.9) using the

flows of (3.6).(3.7) with general ttrminal condition. Making the notations

(.;,I.) = \rg(•

w. can rewrite (3.5) as

dV\(t,x) + FIx. - (t.x)) +((x tx)) 6 dwt (0

V (T-x) = 0(x)

and (3.6)-(3.8) as

(i~t(x) = Fx(;,(x).\t(x))dI + (;\(,•(x), \t(x))6 dw1  (3.14))

,, )-(x)) dwt(.
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dvtt(x) = -(F(;t(x), Xt(x)) - F\(iPt(x), 'tt(x)),t(x)) (3.12)

i;T(X) = x, T1I-(X) = 0(x), xr(x) = Ox(X)

(3.9) is a nonlinear SPDE which has only a local solution for t E ]r(w),T],(i.e. down to a stopping tinie

7(,V) , [10, Chapter 6]) because wpr(x) is only a local flow of diffeomorphisms a.s. up to a stopping time

due to the coupling with Xt(x). We will impose conditions ensuring that Ot(x) is a global flow of

diffeoniorphisms a.s. by making the stochastic Hamiltonian system (3.10) - (3.11) admit a certain

injvariant Lagrangian subbmanifold or random conservation law xt(x)=d(t.•;t(x)..) for all

(t.x) E [0.TJ x Rd a.s.. which will decouple (:3.10) from (3.11).

Equation (3.9) has (31.4) as a robuht randoin PDE (PDE family parametrized by )EQ') with

characteristics solution W(t.i7) - o tt l(71) where

-4- (T.). -t•. t)

ý t" =: FI( . l l

T

I 4
d ht x L t( ýI) + u~ o,, ( , a f (e~~58



O•T
AT 1 N) ~ ~ \

'•I' = X(ýT('7)) c (x (3.13")

dt)t( " 1t Itfu ,-xI wt=:- (tF(tt,6t) - F(ttt)t (3.13"')

"T= 0 oT(,I)

with

x=6Tr(9t/x) - 1(,,)

We omit i/ from the notalion here. writing (4,,, bt,t) instead of (V't(,l),bt(').t(,fl) d.iied a, ill

(1.8)-(1.10) using the flow of (3.13).(3.13') with general terminal condition. We also ojilled for

siizmplicity the variables of functions ill the second and third equation. Consideripg

xiv ft(( I S) ( t,(;;.-I) T F~(s.VJ'(7)6 ) t~ 1))TT

t(17) =71 t < s < T

we have

5 4
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3.1 Main results on anticipative control and on the cost of
perfect information

The first results concern the optimial control aiid optimal cost function for the anticipative slochastic

control problem (Po) solved by means of (P0 '"') wEI with 11' as in Definition 1.

Trheorem 3.1 Assume (aW), (e) and

Mf JFý,,J xi - 0 ~. i(P)} 0

¾G ,, .I - =, I ,))

for (o)E L=(,)E R2('1-9_ ( 11., (=1,..p. i=1..,d where {.. is the Poisson bracket

dlefined by (O;k)k~.) Oh -' Ok- Oh1 )l

rThen fi O(t.X,w):=u 0 (t.Ct (x)..w)= arg inif E[O(x(,r~t,x))l = O(Ox(x),x)) (i.e. the optimal control is~ a

feedback control) and

\,~~.,)= ifif O(X(T'.t,x)) = O(.x)+F(0dOx(0))(T-t) + L GC(O,Ox(O))
U.a E A E= I

x [wi('1...) - w.(I.,,.i)].V(t.x) = inf E[O(xc(T~t.x))]= e(x)+F(o,8X(o))(T-t) =EV0 (t,x..;)
ui E -A

where V0(t,x.,.;) is the unique. global (C2 solutioni of HJBSPDE

dV 0 (t,x) + mnin{ 2y f+x (x~u)}dt + 9OV =~~~) ow

V0(T.x) = O(x) (3.15)
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d
Remak L is a Lagrangian submanifold as the symplectic form Zdxi Ad~i is null on L(Armold [I]).

i=1

"The next theorem characterizes the cpt mal control and optimal cost function of (110 ) in anot her case

in which these can be globally defined (i.e., for t E [0,T], x E Rd). In this case the optimal control

may be anticipative and V0 (t,x,w) is not separable in t and x as it is in Theorem 3.1.

Theorem 3.2 Assume (aW). (c) and

(f") { xi(j,),F(p.x)} (= {F\i(;,.x), GC(ý,)} = 0

for(,7.\) E R~d, C=-I ..... p. i=1 ..... d

(f", {FJi(',,O). \ - 0,1;)} = 0

for(;.\) E L

Then 6i0(t.x..;.) = O(X '0 o j(x).x) and V0 t v... ~t o
t9-x(x) is the unique, global. (2 solution of,

(3.15) where

dct(x) = Fk(0O.x(0))dt + g(; 1 ('Pi) dwt. Po-(x) = x (1. lb

and vt(x). \t(x) are given by (3.7). (3.8) in which pt(x) is the flow of (3.16) above.

Fxample

It is interesting to see how these conditions and formulas look in the particular cats,, of' Ow

(leerilniiistic LQG problem

it=Axt + But , x0 ='g

4
(p

S. . . ..... . . ... .. . . .. ___



Tf
inf [ (xTQxt +uTRut)dt+ xj-F XT]

We have the HJB PDE (dynamic programming equation after minimizing)

?DX DVAx -I DV BR-IBT( OV) xaON, + 2V-x - BR-' B a1 + xTQX = 0
at x 4 Ox

V(T,x) = XTMX.

C'ondition (f) amounts to {F(p,•.). Xi-2(MNp)i} = 0 on the Lagrangian submanifold L = R2dk-

!M;=0}, where F(;.X) = XTA;--i jT BR'iBT\+•TQ% is the Hamiltonian. =l.d and ({I;)i4

denotes lie i-th component. Aftei calculations we get that (0 is in fact

Q + MA + ATM - NIR-iB-WM = 0

i.x. \1 must satisfy the algebraic Riccati matrix equation and thus is a stationary solution of the

Riccati matrix differential equation. We get V(t,x) = xTMX (stationary cost function). If Mt solve,•

instead the differential Riccati matrix equation 1DRE)

- \It= Q + MIA + \.NI - M1BR-IBJ Mt, MT = M

h len

V(t.x) = xrN1tx

because DRE for Mt amounts to the condition for time dependent integrals of motion for stochastic

Hamiltonian systems [3. p. 231]

dt•(i - 2(Mtv)i) + {F. j - 2(Mtp)i. = 0 on Lt =IR - 2\M1;=I)}
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which is the generalization of (f)( -2M;} is the vector with the ith component being

FI.(•,\).xi - 2(%Mp)i I ).Indeed

d _ 2Mt) + {f x'A -_ TRI BTx + Qgx -2Mtj =0

on Lt .This can be seen by first calculating the Poisson bracket and differentiating with respect to time

to get

-2M•• + -2Mt}(A -½BR- \ - A"X -2QQ'- 0.

We thlen substitute \=2Mt; and factu, out 2; to get

- Nit = MtA + A'rMs - MIBR-IBTMt + Q, MT = M.

We state now the generalization, of "l'heorem 3.1 obtained by imposing conditions for lie existence of

i inm' %aryinig determinist ic and randoni , onservat ion laws

Theorem 3.3
A..snnie (a'), (e) and assuiiiie there exist 1(,) ..... .ddt.) which are C3 in l and l(. in I satiiig

V(.)E E= 1(;.\) E RidIlk-1(t,;) = 01 itE [0.T]

-6t(t.p) + {F(;.x). X; - "i(t.;') = 0 i=1.d.

(K) 1C{(;,), \-i(t,,P)} =0 i=l.d: 0=1.p

Then u0 (tx) = 0•3(t.x).x) and V0(t,x..;) = vt o €i (x) is the unique, C2 global solution of (3.5) where

dv;t(x) = F\(.,(x), •(t,;p(x))di + c;\(;t~x),J(t,pt(x))) 6 dwt (3.17)

;,.(x) =x
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-•t(x) = - (F(,.t (x), . t,-(x))) -P\(•Pt(x), /j(t,Vt(x))))0T(t,,pt(x))) p. 1T')

O.()= O(x)

and {(,.,t), k(w,x,t)} =. - Ok ) for each tE[(,T].

Remarks

1) Assume ti(t,•) = & (i.e. 3i are gradients of some 7i, for t fixed) exist satisfying (g). T'hein

V°(t,x.w) can be expressed as

V0 (t xw) = -(t,x) + ý(t.-)

P

dý(t-u) = •l(t)dt + Z•(t)dwe ý(T.w) = 0 (3.18)
(=1

where d is the backward Ito differential notation and with •1 2 given by

I€ M

If we consider stochastic lime-varying prime integrals of the stochastic characterislic system of (3.5) of

the form k,(x) =)(t,.t(x),w) we get an even more general form of Theorem 3.2. We denote DkX
i0k I a kni Jl= ,

Ox II I dx kil n

Theorem 3•.4

Assume (a'). (e) and assume there exist d gradient backward random fields 3l(t,•,w)

s.t. which are C3 in v. V t E[0.1l a.s.

644f I



IDx,.(t.x,w)I < r(t.w) E Loc([O.'T]) V x E Rd a.s. for Iki _5 3 (i.e. for some proceses r(t,.) al,,ost sr,

locally integrable on [0.T] ) and have differentials given by

Pe

d (t,•3) = ,6j1(t.)dt j Jj.(t.w) 6dw• ; j=1 ... ,d (3.20)
(--1

satisfying for all (,) k Lt()={(.\) E R2 d k - 2(t,',.w)=O1 and for all -. in some D" willi

+ ( \ - '•(I';.w )}=0

I g')

3.C + {(;(t\)" \ - i = 0 i= .Id; C= I ..... p.

, ( ... )= O (x()

"wih [ 1(0.x. )=O(3(i.N...x))is I"!F-adapted and v O(t~x,•) -(t.x..,)+ Z(t,,), j(..•) =0 Willh

(t,)gi\'ll by

P

dZ (t,,) = Z l(tw)dt + C(t•) 6 dw,
(=1

0( -,. + t(I..). + = 0 a.s. (3.21)

+ , , + + Z2kjw)- -+ 0 a.s. 1=1,...,p

d'•(t.~,w),= '(t.,)l.")dt + Z I (tp,,) 6dwi
(=1

Where 32plw) t, ).whr (,,) - - (t.:.•) -- Je(t.•,,) a.s.

V (t.x..') is I he unique (C2 global solut lion of (3.5) and it can be represented by VO(I,x.•,') V- I o•! 1W
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with vt(x),gt(x) given by (3.17'),(3.17") where instead of /3(t,pt(x)) we substitute ;1(t.,o(x).W) defined

above.

In his pioneering work on stochastic Hamiltonian mechanics [3], Bismut was the first to consider

deterministic conservation laws for stochastic Hamiltonian systems We defined here a generalization

of these invariants which in the case of stochastic systems must naturally be random conservation laws.

We can now state the results concerning the "cost of perfect information": the difference between the

nonanticipative optimal cost and the optimal cost when anticipative controls are allowed. In general

we have

Theorem 3.5

Assume (a'),(c'),(e) and assume that for all x E Rd qt(x), the stochastic flow of (3.6), is a global flow

of diffeomorphisms for t E O.T" almost surely (which is true under the assumptions of any of Theorems

:3.1 - 3.4). Then

A V*(t.x) - EV 0(t~x) = { E[\(f s (X*(s;t~x))(f(x* (s:t,x). u*(sx* (s:t.x)))

Sf(x* (s;t,x),o( \o ; (x * (s:t.x)).x* (s;t,x))))]ds for any t E [OT]. x E

(3.22)

where x*(s;t.x) is the solution of

dxs = f(xs,u*(s.xs))ds + gl:.s)dws, .x = x s E [t,T]

In the case when the system of stochastic characteristics (3.6) - (3.8) admits a random conservation law,

.3(t.x.,4). which is the case of Theorem 3.4, we have in particular the following formula for the cost of

information on the future

Corollary 3.1 Under the assump'ionls of Theorem 3.4 and under (c') we have
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A(t,x)=V*(t,x)- Evo(t,x)= E[ý3(sx*(s t.x),w)(f(x*(s;t,x),u*(s,x*(s;t,x)))

t

- f(x*st t,x),4( 3(s.x*(s;t.x).w),x*(st .x)) ))Ods (3.22')

Similar corollaries hold for each of the Theorems 3.1, 3.2, 3.3 by replacing in (3.22') 3'(s..,•) by the

corresponding formula for 0 (s,.,w). In the case when (f) or (g) hold we can show that the cost of

perfect information is zero and the optimal anticipative control is nonanticipative (feedback).

Corrolary 3.2 Assume that either (f) or (g) hold . Then A(t,x)=O

t
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3.2 Proof of the main results

Proof of rheorems 3.1 - 3.4

1In order to prove Theorems 3.1 - 3.4 we will follow the same method as in §2.2. We considehr the

pathwise problems (Po0")w cEf2 and random PDE's (3.3) which after applying the selection lemina (see

(e)) become (3.4). Using the Verification Theorem [8, p. 87) and the characteristics method (3.13) for

W(t, qj), the minimizer u0(tj/,,,v) is optimal for (Po'w) and W(t./) is the value function. W(tar)

0 t (TI) (see (3.13), (3.14)) and

0 0 00 -
dW (t.11t ) W W 0 a 0w"t,)O _ A t,7 4W 10 ( '70 i rf(ý o0'(it T~-('-'- t ) + T ,-I t(i---t a b•t P+ -0-1, tt Ox,

a77t ,t)W(t a' 0)70 )ýt"1)) 0 a,0

where qI., i t as given by (1.4) for u = uO(t.q,,.

To show that \( tV (() ) : \'0(.x) - inf o(x(T.t.x)) is the unique global solijion of (3.75) w,.
"E A.

consider linear interpolation approximations {I:v1 (t.w)n E N (2.17) of w(t..x) in

d t w( tll)i 1(t,.•.)

(orresponding to this we have a sequence of random PDE's

-t (t, ,+ 87t 0 -11) , OOx (-I )) a-

Wn(T?,) = 0 o ( ) (3.23)

"Then by ordinary differential calculus W'it,(Lg()'l(x)) VOn(tx) satisfies

O[~~,X ~~ (t7(Ovo~ oVo,n.(g av°'n(t'x)Ot + O•ax (t'()•• "€ (tx),x + T (t,x) g(x) ,,n =at 9



v°'n(T,x) = 0(x) (3.24)

A. in §2.2 we. can prove the following convergence resuits in probability for each I uniforrily .in x and t!

.°n( P (t, x) (3.25)

Wvn(t,l) Pj ",'(t,?,) (3.26)

w n(t.(,'( x)t)- ) I \ '(t,,tlw )). 13•.2-7)

where V° and W are tie solutions of •3.5) and (3.4). (3.25), for example. can be shown using the

slochastic and ordinary characteristic, SDE representations to reduce (21) to show the convergenice of

the solut ions of characterisl ics SD Es,. InI onr notation

) to( (j): (x) V°(t.x) = v110 l(x). (3.20 )

M icro. for examphl under Ilie asimtptions of Theorem 3.1, as we will see, we have

(IVi

x ) (,ý,(x). 6x(; (X))) -(;V'(x))i 1 , c(x)

h(x) = Fx n0x),(.30

L(t (3.30)

d,;t(x) = F"I(,; 1 (x)0x(,;1 (x)))udt+g(,;t(x)) 6 dwt, .PT(X) = x (3.31)

dsFp( ( x) IM,.( ;;(x)))ds + g(;pI(x)) odwsojt(x)- x
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t <sT: < t(x) 1 (3.32)

It follows from [3 ,p. 3 9] that ýP (x) ;- t (x) uniformly in probability on compacts of [.'i] xRd

1t(x) is given by integrating the same expression as in (3.30) but with qt(x) instead of ;l'(x) • We

used the forward equation (3.32) to get the inverse of the backward stochastic flow pt(x). It follows

now from wn~(t,()-t(x)) = V°'n(t.x). (3.25). (3.26), (3.27) and the uniqueness of the solution of the

stochastic PI)E (3.5) that we must have

V V°(t.x'.

For all this reasoning to hold we need to ensure that both (3.5) and (3.4) have a global soliwion (the

former holds if pt(x) is a global flow of (diffeoniorphisms a.s.). The following lemmas give conditions

for the existence of global solutions for nonlinear stochastic PDE's (3.9).

Lemma 3.1

'onsider the backward nonlinear SPD!. (3.9) and assume (a'), (e) and (f). Then (3.9) has a uniqu(e

global solUtioti

VO(t.x..•.) = W(x) +f'F((,t,())(]'-t) + (G(0.Ox(O))[w(T,a) - w(t.,,)]

i.e. V0 (t.x.-) is separable.

Pr2f (f) is equivalent to \t(x) = £'x(qt(x)) , t E [0,T] where Xt(x),pt(x) are stochastic

characteristics given by (3.10). (3.12). Indeed applying Ito's backward rule [14, p.2551 we see that

(;t(x).\t(x)) E L for all t E [0,T] implies

d t(x) - Oxx(pl(x))d ;t(K) = - F,(jt(x),It(x))dt

S(up(x),\t(x) ))6 dwt - Oxx(ot(x))F\(.pt(x),Xt(x))dt -Oxx(,t(x))

x G.(vt(x),xt(x))6 dwt = {FF(,x),x-9x(p)} b=ft(x)dt

+÷ {G(',,\). \-ex(W)) •._Vt(x)o dwt = 0 x=xt(x),4

+ 6dw t(X)(X\=\t(x)r,70



To see that (f) implies (Et(x),x\(x)) E L for all I tv0T we make the change of coordihnl,,

Tx : ox( =

Indeed T is a change of coordinates as

0T(.';( [ Id ad
c9(;,,\) -[_0xi(i id

in tihe' new coordinates (f) is equivalent to ('f):

T(L) =L E{(•. S ) e R2 dI•--

X F(i)Ix ) G ,f (Tj =0

F G
where X• F( ,. ) = T T- 1• -•) XI" T - 1• •-)), G • ,") 0 (T -1• ,-

xX ard Xr.=) F GF X =e f(GE

C=1 ..... p i=l,.....d

The stochastic characteristic equation,, in the new coordinates become with our notations:

(Tt(x) R2 t(x).t(x)) dt + R ( t(x), t(x)) 6dwt
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P
: XF ( t(x)'." t (x)) d t + •= e • (if( t. (x).T" t(x)) 6 dwe ; 5 T(X)=X.•" T(X)=0 (3.:33) •

and (•) implies

J 2C ; x)O =O e= 1...,.. .

Under the assumptions (a) made on rýge .0 (3.33) has for all x E Rd a unique solution and this is

(P ý(x),\ ,(x)=0). t E [0,1]: where ;5(x) is the unique solution of

d- (x)=- l((x),0)dt + Z *2 (t(x),O),6dwt; ip(x)=0.
C=I

As ,(x)=\t(x) - O(•:t(x))=U , we obtain (;,(x),\.t(x)) E L for all t E [0,T] .

The geometric interpretation of (f) is that in every point of the Lagrangian submnanifold

L={( .x) E R2d] \=0x(,)} tihe drift amid diffusion Hamiltonian vector fields

F = " - - I" -

X =(1 J _ t

are tangent to L (we use the vectorial Poisson bracket notation from the LQG Example)

-{F,\ -xi(1)}[ " Xl.,\i-t~xi(?))[l. = 0

{Ge, Xi-Oxi()}L = XG(Ci .- Oxi())IL = 0 ;i-1 ....d

so that as the stochastic characteristic system (3.10), (3.11) (seen as a stochastic Hlamiltonian systemti)
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starts at t=T on L (Tr(x) - 0xl(T(x)) = 0 for all x E Rd) it will remain there for all 0 < t < T a.s..

L, is thus an a.s. invariant subitiafifold for (3.10). (3.11). As a consequence p1 (x) is thIt flow of (3.31)

which is an SDE with Lipschitz coefficients due to (a) so that #t(x) is a (glohal) flow of

(Iiffeomnorphisms a.s. for t E [0,T][12]. Thus V)(tIx) = vt o,9jl(x) is the global solution of (3.9). But

more can be said about V0 (t,x). As

0V- (t,x) = xto 0 I(x) = Ox(xl.0x_

V0(t,x) is separable

vO(tx) = O(x) + (

To find lc(t..,.), a backward random field with the differential

P

(= 1

' slistl5tit te (3.34) in (3.9):

[ý1 (t) + F1(X,Ox(x))](It + y [•(t) + Gf(X.Ox(x))]6 dw - 0.
C=I

Due to (f) F(xOx(x)) = F(O.Ox(O)). (G(x,Ox(x))) = GC(OOx(O)) so that ý(t,w)= F(0.Ox(O)(T-t)

P

+ ZG.(O'Ox(O))wE(Tw) - w (I'W)]"
(=1

Lemma 3.2 Consider the backward nonlinear SPDE (3.9) and assume (a), (c'), (r") and (W). 'I hen

(3.9) has a unique C2 global solution

VO(t,x) = VOt I Wx)

7. _



I
with •:tI(x) the inverse now of (3.16) and vt(%) given by (3.8) in which pt(x) of (3.16) is subs.titul.ed.

Proof (fr) and (f") imply that for i=l,....d.

Fxi(ýpt(x),Xt(x)) = FXi(x,Ox(x)) = FXi(0,Ox(0)).

i.e. FyN(.t(x),xt(x)) are d prime integrals (conservation laws) (see Arnold [1], Bismut [3]). As a result

the first stochastic characteristic equation is an SDE (3.16) ("decoupled" from Xt(x)) and pt(x) is a

global flow of diffeomorphisnis almost surely because of (a').

Generalizations of Lemmasi 3.1 and 3.2 leading to Theorems 3.3 and 3.4 are niade by allowinhg thlie

conservation law to be time dependent and respectively both time dependent and random so that it i.

a random field having a certain backward differential.ln this way (g) and (g') imply that

xt(x)=d(t.,pt(x)) and respectively tx) = ,(t.ýt(x),,u) (the differential of the riiJo()u field being

(3.20) so that again ;t,(x) is given b) all SDE ("decoupled from \t(x)) which in the casm of* random

field couiservation laws has random cu.fficients. In this case the global diffeomorphic property of

folkows fri'in [12.,.4.6] . (a') and lbe local integrability w.r.t. time a.s. of the derivatives ill x of the

ratiilom field assumed in Theorem 3.1.

We need a result connecting the existence of a global C2 solution for (3.9) to the existence of a global

(.1.2 solution for (3.4) so that the latter is implied by the former. We will prove this when (f) is

i-,susned. The cases when any of the asstmmptions (ff)-(l~), (g) or (g') are made are treated similarly.

Proposition 3.1 Assume (a'). (e) and (f). Then (3.4) has a unique C1'2 global solution given h%

\V(t:) = •t -' 1(;1) where T -1(ij) is tile inverse flow of

dt

d t(11) -

aidl t is given by (3.13) with 6 t=0, (e t(Y7)) and (,t=V t(ij) substituted in the equation for
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F-

Prof We will show that the characteristic sub-system for (3.4) made of the first and second

equations of (3.13) has a unique global solution a.s. given by ( 0t(,I), Ox(,t(7j))), First due to the

assumptions on fg. 0 and o wc see that (3.15) has unique solution and (3.35) has unique global

solution generating a global flow of diffeomorphisms a.s. due to tt(x) being a.s. flow of CA global

diffeomorphisms and to the inequaiity(see Ocone and Pardoux [15])

0 I
sup (Gx] (x)._<((6)(l+IxI2)6 for every b>0 (3.36)

where ý(•) are LP-bounded random variables for p > 1. (3.36) plugged in the expression of F " (.ee

(3.13)) ensures this has a.s. linear growth. Showing that (3.13) ha&, the solution (t (I).

St=0x(t r (iq)) amounts to checking th&m, (f) implies that 6 t--0 x(V t(rq)) satisfies (we omit Ti):

(It = _F {•t(L-) 0 •--1 • )):= -F •(t,,t bt6 ).

7,!. = 0x(,-(')) F(')

that is. 1sing the sum latiOh Cot1e1tiott.

+ + oxjxi(•t: ibF . _ = (3.37)

t, t' t.

WVe first check the terminal condition

"•T=x(T( ()- ,= ex TOM T()) =

This holds because (f) is equivalent to

0 -- •gj(O), k Oxk ( )) l k j
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V, E Rd; 9=,..p; k=I .d. which implies that for all 17 E Rd, t E [0,T]:

a.s. (.8

This can be seen by applying Ito's rule

tt

d(9Xi(tW)Xji()= (d4)x (1i Xjx oda+G~k

odw .( t) k (77 gij1Xa g.t4(?())

where we have used

d ~ ~ ~ a __07 )~~(?) o dw'.

Aa consequence we also have

We differentiate with respect toIl

0 (x~v)~ '00~ + 0~(J (1;) (?1) 0 txx(q(')) ()7)(3.40)

Remembering the definition of F(;.x,) in (3.9) we have the following relations between F Ft. and

F kwhert, ')b ( ki ) etc. and F 'P .F O : ,)) wt

fot I xwt

F *F'k (`ax)ki4') + F~kfxi t

F- F (8  - I (V,)
lj Xk a;;Xt~
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which when introduced in (3.37) yield that proving the proposition now amounts to showing (we omit

arguments of functions):

ax 0•+ )O~xi \ Gx/gk (V' t) + 0xjxi(ý t.)"\•i l(dx
F'=1'C(-L.)fi ) Ftk t_ A

VT t'".t

=0

But interchanging the summation indices in (3.40) j-i, --k and evaluating for 7=1= t we get

E= (Ff (t, i FxkO,•k (•- -- ') L, t
- {rt,,.\). X,- :.t; }:.;\ , -c( t0 x + I , kt'x C-

P I

(C

Due to (3.39) and 6 = ox(e" t)

= Ox(L t),O (L+ ) = Gx(ýt(t.)) =x(•t)"

tor all t E [0.1] so that ( kt. \t) E 1, a.s. for all t E [0.'] and (f) implies

{F(;,\), \C-xC(;)lI(.G.7)E L = 0

which proves the characteristic systen, (3.13) has the unique global solution (V t(t?), T t(rl)= 0 x(T' t('1)))

and thus (3.4) has the unique global solution W((t, Y/)=ytoýt'(,) where .11j() = .•(?) with

1 !.(r,)given by the forward random equation

dlZj.'(9) FhQ t(/) OT, T -t% ('7**'()) 4d- OX



Interpretation of the result

The Hamiltonian geometric interpretation oh this result is that the solution decomposition lfrmula

(1.2) leads to defining a canonical point transformation (see [3, p. 339], [1, p. 239]. [16. i).?2])

between the random Hamiltonian system

= F (t.t 1 .1 : i-

t, O T q)(3. 12)

andl the stochastic" Hamiltonfian N+xtem,

dd; t F I'(•'td + G (•"t6 d".,t :-I-T = x

(3.43)
Sd't~ = - F,(#tt)dt - (t;•,,xtt) 6dwt; XT=ox(x)

Being canonical the transformation preserves Poisson brackets

{F(;.\). \- 0x(€)}€.\ = {iO(x 1tW(t) (-. j) ( a•xt y ) - (o)

which can be shown following the computationý from the classical Hamiltonian case from ltund [17. p.

Mti-93] for our case. 'This way (3.43) having the Lagrangian invariant submanifold L implies that

(3.12) will also have 1, as invariart snimianifold via (f). One can proceed like this using the theory of

canonical transformations for stochastic Hamiltonian systems of Bismut [3, p. 339] to develop a theory

of canonical point transformation bt tween stochastic Hamiltonian systems and the robusi random

Hanailtonian systems associated with them. Proving the convergence result (3.26) whmenl (f) is a.suined

means in the light of Proposition 3.1 proving that for each t E [OT]
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(i ,)-1 (tj ) - P •:•(

uniformly in ?I on compacts where

" dt - ,d(ýn •(t , n l, n•(. " F -x ,'[(,7))), V;-, ) n ,7.
= )) OT (( 7 )Rx)(.L

[his is proved in the same way its (2.3'5). The random characteristic system (3.13) is -decoupleh (

- n=Ox(-u •) ) under (f) and so for each t E [0,T] by continuity

TI(T) - (r7)uniformly in 17 on compac(ts thus yielding (3.26) for each t E [0,T]:

\' U .,7) = f) (o ,"))I P0 t h )

uniformly in 7- on compacts. One ap)p)roache". similarly the cases when any of the assumptions (fr) -

(f". (g) or (g') are mad(e in ordi r to "decouple" the stochastic and the random charactieristic .vsl tems

and to ensure the global existence oft lie inverse of the flows of characteristics.

We turf, now to the "cost of inforniatio,., issue.

Proof of Theorem 3.5 and ita corollaries

Averaging (3.5) and interchanging expectation with differentiation and integration (we use again

regularity results of the type of Leinmma 6.2.6 and Theorem 6.1.10 from [10] in our particular case) we

obi aii

OEV0 (tx) + [ e) (F-0) t.x)]f(x.u.(t.x)) _ (EV0)(t~x)]f(x,u*(t,x))

+ %0 (t.x)f(x,•(V0(t.x).x)))+ -tr('2- (EVO)(tx)gg"(x))-'0 (3.1.1)
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EV0(T,x) = O(x)

where we added and subtracted O/ox(EVo)(t.x)f(x,u*(t,x)).

Subtract (3.44) from (see c')).

0v* (tx) + 2x* (tx)f(x,u*(t,x)) - ltr( O2V* ggT(x)) = 0at a Ox2

V*(T,x) = 0(x).

We obtain the PDE for the cost of perlect informationfor A(t,x) = V*(t,x) - EV 0 t.x)

+ OA f(x.u*(tx)) + ttr( 02:ýA- gg(x))+ (EV0)f(xu*(tx))

(91 ax 2) (9 X

E 0. (3-15)

.. ('l]x) = 0.

We obtain (3.22) by representing probabilistically the solution of (3.45) and using the stochastic

characteristics formula for V0(t,x):

T

A(t~x)=E('XJE[V0(sfx)(f(x.u*(sx)) - f(xO(V0,(sx),x))I Ix=x*(s)ds

t

l)ue to x*(s) being independent of \ x(s.x) (the former is past adapted while (he latter is future

adapted) we get (3.22) using the characteristics representation V0 (sx)=%, o Vs (x) . To obtain Ohe

particular formula from the Corollar' 3.1 we use xO0(t.x) = 0(txw)), u0(tx) = 0(,0,x,,),x). (se
I.I

Theorem 3.4). We prove next that assumption (f) (i.e. the Lagrangian submanifold is invatrialit ) leads•b __

8 0 _.. .. .... .. . ... . ... .. .. .. ..... .. .. . _°



to zero cost of information. The case when (g) is assumed to hold (i.e. existence of a time varying

deterministic conservation law) is proved similarly using generalized Poisson bracket computations

(time is included as additional variable ) instead of the usual Poisson bracket. As we have seen in

Theorem 3.1 the anticipative optimal control is nonanticipative (feedback) uO(t.x)=6(Ox(x).x) and

EVO(tLx)=O(x)+Ox(O)(f(,0.(Ox(O),O)) - ½gxg(0))T - t)

so that EV 0 =V0 =Ox(x) and E min {Vof(x,u)}=min {(EV0)f(x,u)}. By averaging the backward Ito

x " uE cUL u EoI

form of (3.15) we see that FV0 satisfies the second order parabolic PDE of stochastic dynamic

programming (2.7') being thus equal to V*(tx) by unicity so that A(t,x)=O. The same happens when

u0(t.x)=O(3(tx).x) , EVO=VO=3(tAJ ( see theorem 3.3 ) because again the gradient of the paihwise

value function is non random due to the existence of a deterministic conservation law . This is not the

case when a random conservation law exists (Theorem 3.4) or when (f'),(f") are assumed to hold and in

this cases A1(t.x) -# 0 and the opfimal coutrol is atnticipative.
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3.3 Example: Anticipative LQG

('on.,ider the anticipative LQG problem (first considered in [5] using extension by continuity):

dxt=(Axt+Bu, )dt+Cdwt

T

•Af E JxQxt+u~Rut)dt+xFxrI ; Q F > 0 , R >0
0

('sing the extension of our results to tie case with integral cost term we obtain the HiB SPI)D of LOG

which is a quadratic nonlinear SPDE

dV°-+4[V°Ax - (1/4)V°BF Ili' (V i' -.ax'Qx]dt+\xC 6dwt=0

VO(].x)=x*I Ix

and the optimal anticipative coni rol in selector form u°(t,x,..')=-(1/2)R-IB' V°.The characteristic,,

ar.( using the Ito backward differential notation [I1. p.255]):

dlpt=[Apt - (1/2)BRFIBBr\t]dt - Clwt ' CT=x

d11!=- 2Qt - AT't : XT= 2Fx

Thlere exist.s a random conservation law \t(x)=2St,;t(x)+2ýt(w) where St is IIw solution of tlhe
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differential matrix Riccati equation

dSt T l~--•-=S tA+A TSt+Q - StBR-1Br'S. ST=

aud

t odwt 1 3 ,'(W)= 0

2L ,; - 23 1 (t,L.;)+ { \ - 2St - 2 ,•t , \ 'A ,; - I x rB R -I T + o Q 1l •o x T t ,o

- 23.2(t'w)+{X - 2St , - 2 LtTC }(,) t()=0

L(w)={(,) CE R2-1 \=2St+231(G) }

We can comment again that although thle coefficients of the SPDE and SI)E are not boundthd with

b)ounled derivatives the cxistence of an affii~e conservation law leading to an affine first charact ristic

equation .decoupled from the second one. yitlds a global solution .Ilt is important to point here that

such a Hamiitonian niechanics point of view already led to interesting re-derivations of the Kalman

filter by Bensoussan,Bisniut,,Mitter [3, p.356].The value function and the optimal anticipative control

are

\'°(t,x)= x"IStx+ 2Jt(-:;)x+ ,. 1%, ;) . u o(t.x...')= - R-IB T(S tx+ ýt(ý,))

d3t= - (AT _ StBR- I B1 ),bdt - StCCWt gT= 0

dyt= 3iBR'1BPTtdt-2dtrCdwtIT=O

It is interesting to see that Riccat: matrix differential equation appears in the consvrvation law4
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formula. The cost of perfect information is ( see also [5]

T

A(t.x) = Jtr( UtBRB'lB')dt

t

where Ut is the symmetric nonnegative definite solution of the Lyapunov equation

-U-= (A"- StBR-f1 Br)U + Ut(A-BO'BTS) + StCCTST UT= 0
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3.4 Example: a nonlinear anticipative control problem

Consider next the scalar nonlinear anticipative optimal control problem

/cosx t + 2 sinx___t

dx 2(cosxt+2) 3 + ut) dt + +2 dwt

T

inf E [½ru~dt + sinxT + 2 XT
u E A 2

0

Using the obvious extension of our results to problems with integral costs we get the nonlinear HJB

S PI) IC:

dV0 +(mnn I {Ou + ½u2 I )+vO cosx+ 2 dt + V~xcosx+2 6dw, =0

V (T,x) = sinx -,- 2x

which for the minimizer uu(t.x,.) -- V0X(t.x..) becomes

d0 " V0

d\VO +(\,) cosxo+22 i \ d dwt = 0

We can check that (f) holds

cost+2 2 " 21

S 2 \-iv \-c 2 -) L0

COsV+2 -cos; -2}II = 0

for (;\)E L = {(.x) E R2d, \-cos;- -2 = 01 and thus the Lagrangian submanifold L is invariant

for the stochastic characteristics of this HJB SPDE

dlr. O" It dt + 6 dw8 ,
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d it t dt t 0' dwt T cosx + 22 t + d t(cos;Xt+2)

i.e. c= ost + 2 V t E [0,T] a.s. The optimal control is feedback u0 (x) = - cosx - 2

V0(t,x,w) = sinx + 2x -t wT - wt and EV 0(tx) = V*(t,x) , A(t,x)=O ( zero cost of perfect

information) as sinx + 2x is also the solution of the parabolic PDE of nonanticipative optinual control

VVu + m(ox + sinx )+ 'xx =0
at u ~ E-lxk 2(cosx + 2)3 (cosx+2)2

V*(TIx) = cosx + 2
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